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Abstract

Here we present basic ideas and algorithms of Power Geometry and
give a survey of some of its applications. In Section 1, we consider
one generic ordinary differential equation and demonstrate how to
find asymptotic forms and asymptotic expansions of its solutions.
In Section 2, we demonstrate how to find expansions of solutions to
Painlevé equations by this method, and we analyze singularities of
plane oscillations of a satellite on an elliptic orbit. In Section 3, we
expound the spacial generalizations of planar constructions. Power
Geometry gives alternatives to Algebraic Geometry, Differential
Algebra, Nonstandard Analysis, Microlocal Analysis and Group
Analysis.



Plane PG. Theory Plane PG. Applications Space PG Other apps of PG

Introduction

Elements of plane PG were proposed by Newton for algebraic
equations (1680); and by Briot and Bouquet for ordinary differential
equations (1856). Space PG for a nonlinear autonomous system of
ODEs were proposed by the author (1962), and for a linear PDE,
by Mikhailov (1963).
In this talk we intend to give basic notions of PG, present some of
its algorithms, results, and applications. It is clear that this calculus
cannot be mastered during this presentation.
The calculus is subject for one-year course of lectures in Moscow
State University.
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Statement of the problem

First, consider one differential equation and power-logarithmic
expansions of its solutions (although there possible more complex
expansions).
Let x be independent and y be dependent variables, x , y ∈ C. A
differential monomial a(x , y) is a product of an ordinary monomial
cxr1yr2 , where c = const ∈ C, (r1, r2) ∈ R2, and a finite number
of derivatives of the form d ly/dx l , l ∈ N. A sum of differential
monomials

f (x , y) =
∑

ai (x , y) (1.1)

is called the differential sum.
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The main problem

Let a differential equation be given

f (x , y) = 0, (1.2)

where f (x , y) is a differential sum. As x → 0, or as x →∞, for
solutions y = ϕ(x) to the equation (1.2), find all expansions of the
form

y = crx r +
∑

csx s , cr = const ∈ C, cr 6= 0, (1.3)

where cs are polynomials in log x , and power exponents r , s ∈ R,

ωr > ωs, (1.4)

ω = −1, if x → 0, ω = 1, if x →∞. (1.5)

The procedure to compute expansions (1.3) consists of two steps:
computation of the first approximations

y = crx r , cr 6= 0 (1.6)

and computation of further expansion terms in (1.3).
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Computation of truncated equations
To each differential monomial a(x , y), we assign its (vector) power
exponent Q(a) = (q1, q2) ∈ R2 by the following rules:

Q(cxr1yr2) = (r1, r2); Q(d ly/dx l ) = (−l , 1);

when differential monomials are multiplied, their power exponents
must be added as vectors Q(a1a2) = Q(a1) + Q(a2).
The set S(f ) of power exponents Q(ai ) of all differential monomials
ai (x , y) present in the differential sum (1.1) is called the support of
the sum f (x , y). Obviously, S(f ) ∈ R2. The convex hull Γ(f ) of
the support S(f ) is called the polygon of the sum f (x , y). The
boundary ∂Γ(f ) of the polygon Γ(f ) consists of the vertices Γ

(0)
j

and the edges Γ
(1)
j . They are called (generalized) faces Γ

(d)
j , where

the upper index indicates the dimension of the face, and the lower
one is its number. Each face Γ

(d)
j corresponds to the truncated sum

f̂ (d)j (x , y) =
∑

ai (x , y) over Q(ai ) ∈ Γ
(d)
j ∩ S(f ). (1.7)
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Example

Consider the third Painlevé equation

f (x , y)
def
= − xyy ′′+ xy ′2− yy ′+ ay3 + by + cxy4 + dx = 0, (1.8)

assuming the complex parameters
a, b, c , d 6= 0. Here the first
three differential monomials have
the same power exponent
Q1 = (−1, 2), then Q2 = (0, 3),
Q3 = (0, 1), Q4 = (1, 4),
Q5 = (1, 0). They are shown in
Fig. 1 in coordinates q1, q2.
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Example

Their convex hull Γ(f ) is the triangle with three vertices Γ
(0)
1 = Q1,

Γ
(0)
2 = Q4, Γ

(0)
3 = Q5, and with three edges Γ

(1)
1 , Γ

(1)
2 , Γ

(1)
3 . The

vertex Γ
(0)
1 = Q1 corresponds to the truncation

f̂ (0)1 (x , y) = −xyy ′′ + xy ′2 − yy ′,

and the edge Γ
(1)
1 corresponds to the truncation

f̂ (1)1 (x , y) = f̂ (0)1 (x , y) + by + dx .



Plane PG. Theory Plane PG. Applications Space PG Other apps of PG

Let the plane R2
∗ be dual to the plane R2 such that for

P = (p1, p2) ∈ R2
∗ and Q = (q1, q2) ∈ R2, the scalar product

〈P,Q〉 def
= p1q1 + p2q2

is defined. Each face Γ
(d)
j in R2

∗ corresponds to its own normal cone

U(d)
j formed by the outward normal vectors P to the face Γ

(d)
j . For

the edge Γ
(1)
j , the normal cone U(1)

j is the ray orthogonal to the

edge Γ
(1)
j and directed outward the polygon Γ(f ). For the vertex

Γ
(0)
j , the normal cone U(0)

j is the open sector (angle) in the plane
R2
∗ with the vertex at the origin P = 0 and limited by the rays

which are the normal cones of the edges adjacent to the vertex Γ
(0)
j .
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Example

For the the equation (1.8), the
normal cones U(d)

j of the faces

Γ
(d)
j are shown in Fig. 2.
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Theorem 1

Thus, each face Γ
(d)
j corresponds to the normal cone U(d)

j in the
plane R2

∗ and to the truncated equation

f̂ (d)j (x , y) = 0. (1.9)

Theorem (1)

If the expansion (1.3) satisfies the equation (1.2), and
ω(1, r) ∈ U(d)

j , then the truncation y = crx r of the solution (1.3) is

the solution to the truncated equation f̂ (d)j (x , y) = 0.

Hence, to find all truncated solutions y = crx r to the equation
(1.2), we need to compute: the support S(f ), the polygon Γ(f ), all
its faces Γ

(d)
j , and their normal cones U(d)

j . Then for each

truncated equation f̂ (d)j (x , y) = 0, we need to find all its solutions
y = crx r which have one of the vectors ±(1, r) lying in the normal
cone U(d)

j .
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The vertex Γ
(0)
j = {Q} corresponds to the truncated equation

f̂ (0)j (x , y) = 0 the support of which consists of one point

Q = (q1, q2). Take g(x , y) = x−q1y−q2 f̂ (0)j (x , y), then g(x , cx r )
does not depend on x and c , and it is a polynomial in r .
Consequently, for the solution y = crx r to the equation
f̂ (0)j (x , y) = 0, the power exponent r is the root of characteristic
equation

χ(r)
def
= g(x , x r ) = 0, (1.10)

with an arbitrary coefficient cr . We need only those roots r of the
equation (1.10) for which the vector ω(1, r) lies in the normal cone
U(0)

j of the vertex Γ
(0)
j .
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Example

For the equation (1.8), the vertex Γ
(0)
1 = Q1 = (−1, 2) corresponds

to the truncated equation

f̂ (0)1 (x , y)
def
= − xyy ′′ + xy ′2 − yy ′ = 0, (1.11)

and f̂ (0)1 (x , x r ) = x2r−1[−r(r − 1) + r2 − r ] ≡ 0, i.e. any expression
y = cx r is a solution to the equation (1.11). Here ω = −1, and we
are interested only in those solutions which have the vector
−(1, r) ∈ U(0)

1 . According to Fig. 2, this means that r ∈ (−1, 1).
Thus, the vertex Γ

(0)
1 corresponds to the two-parameter family of

power asymptotic forms of solutions

y = cx r , arbitrary c 6= 0, r ∈ (−1, 1). (1.12)
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The edge Γ
(1)
j corresponds to the truncated equation

f̂ (1)j (x , y) = 0, the normal cone U(1)
j of the edge is the ray

{P = λω′(1, r ′), λ > 0}. The inclusion ω(1, r) ∈U(1)
j means the

equalities ω = ω′ and r = r ′. This determines uniquely the power
exponent r of the truncated solution y = crx r and the value ω. To
determine the coefficient cr , we need to substitute the expression
y = crx r into the truncated equation f̂ (1)j (x , y) = 0. After
cancelation of some power of x , we obtain an algebraic equation for
the coefficient cr

˜̃f (cr )
def
= x−s f̂ (1)j (x , crx r ) = 0. (1.13)

Each root cr 6= 0 of this equation corresponds to its own
asymptotic form y = crx r .
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Example

For the equation (1.8), the edge Γ
(1)
1 corresponds to the truncated

equation

f̂1(x , y)
def
= − xyy ′′ + xy ′2 − yy ′ + by + dx = 0. (1.14)

Since U(1)
1 = {P = −λ(1, 1), λ > 0}, then ω = −1 and r = 1.

Substituting y = c1x into the truncated equation (1.14) and
canceling x , we obtain the equation bc1 + d = 0 for c1, whence
c1 = −d/b. Thus, the edge Γ

(1)
1 corresponds to a unique power

asymptotic form of solutions

y = −(d/b)x . (1.15)



Plane PG. Theory Plane PG. Applications Space PG Other apps of PG

The truncated equation f̂ (d)j (x , y) = 0 may have non-power
solutions y = ϕ(x) which are the asymptotic forms for solutions to
the original equation f (x , y) = 0. These non-power solutions
y = ϕ(x) may be found using power and logarithmic
transformations. Power transformation is linear in logarithms

log x = α11log u + α12log v ,
log y = α21log u + α22log v ,

α =

(
α11 α12
α21 α22

)
, αij ∈ R, detα 6= 0.

It induces linear dual transformations in spaces R2 and R2
∗.

Logarithmic transformation has the form

ξ = log u or η = log v .
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Example

For the truncated equation (1.14) corresponding to the edge Γ
(1)
1

with the normal vector −(1, 1), we make power transformation

log x = log u
log y = log u + log v ,

α =

(
1 0
1 1

)
,

i.e. x = u, y = uv . Since y ′ = xv ′ + v , y ′′ = xv ′′ + 2v ′, then,
canceling x and collecting similar terms, the equation (1.14), takes
the form

−x2vv ′′ + x2v ′2 − xvv ′ + bv + d = 0. (1.16)

Its support consists of three points Q̃1 = (0, 2), Q̃2 = (0, 1),
Q̃3 = 0 placed on the axis q̃1 = 0. Now we make the logarithmic
transformation ξ = log x .
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Since v ′ = v̇/x , v ′′ = (v̈ − v̇)/x2, where ˙ = d/dξ, then, collecting
similar terms, the equation (1.16) takes the form

−v v̈ + v̇2 + bv + d = 0.

Applying the technique described below to this equation, we obtain
the expansion of its solutions

v = −(b/2)ξ2 + c̃ξ +
∞∑

k=0

ckξ−k ,

where c̃ is an arbitrary constant, and the constants ck are uniquely
determined. In original variables, we obtain the family of non-power
asymptotic forms of solutions to the original equation (1.8)

y ∼ x [−(b/2)(log x)2 + c̃ log x +
∞∑

k=0

ck (log x)−k ], x → 0.
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Critical numbers of a truncated solution

If a truncated solution y = crx r is found, then the substitution
y = crx r + z reduces the equation f (x , y) = 0 to the form

f (x , cx r + z)
def
= f̃ (x , z)

def
= L(x)z + h(x , z) = 0, (1.17)

where L(x) is a linear differential operator, and the support S(Lz)

consists of only one point (v , 1) that is the vertex Γ̃
(0)
1 of the

polygon Γ(f̃ ); the point (v , 1) is not in the support S(h). The
operator L(x) is computed as the first variation δf̂ (d)j /δy on the
curve y = crx r . Let ν(k) be characteristic polynomial of the
differential sum L(x)z , i.e.

ν(k) = x−v−kL(x)xk . (1.18)

The real roots k1, . . . , kκ of the polynomial ν(k) that satisfy the
inequality ωr > ωki are called the critical numbers of the truncated
solution y = crx r .
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Example

For the truncated equation (1.11), the first variation is

δf̂ (0)1
δy

= −xy ′′ − xy
d2

dx2 + 2xy ′
d
dx
− y ′ − y

d
dx
.

On the curve y = crx r , this variation gives the operator

L(x) = crx r−1
[
−r(r − 1)− x2 d2

dx2 + 2rx
d
dx
− r − x

d
dx

]
.

The characteristic polynomial of the sum L(x)z , i.e. L(x)xk , is

ν(k) = cr [−r(r − 1)− k(k − 1) + 2rk − r − k] = −cr (k − r)2.

It has one double root k1 = r , which is not a critical number, since
it does not satisfy the inequality ωr > ωk1. Consequently,
truncated solutions (1.12) have no critical numbers.
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For the truncated equation (1.14), the first variation is

δf̂ (1)

δy
=
δf̂ (0)1
δy

+ b.

On the curve (1.15), i.e. y = c1x , c1 = −d/b, this variation gives
the operator

L(x) = c1

[
−x2 d2

dx2 + 2x
d
dx
− 1− x

d
dx
− b2

d

]
and the characteristic polynomial

ν(k) = −c1[k2 − 2k + 1 + b2/d ].

Its roots are k1,2 = 1± b/
√
−d . If Im (b/

√
−d) 6= 0, then real

critical numbers are absent. If Im (b/
√
−d) = 0, then the

inequality ωr > ωki is satisfied by only one root k1 = 1 + |b/
√
−d |

which is a unique critical number of the power asymptotic form
(1.15).
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Computation of asymptotic expansion (1.3)

Using support S(f̃ ) of the equation (1.17) and numbers k1, . . . , kκ
with ωr > ωki , we can find the set of numbers K(k1, . . . , kκ) ⊂ R.
Its elements s satisfy the inequality ωr > ωs.

Theorem (2)

The equation (1.17) has an expansion of solutions of the form

z =
∑

cs(log x)x s over s ∈ K(k1, . . . , kκ), (1.19)

where k1, . . . , kκ are critical numbers of the truncated solution
y = crx r ; cs are polynomials in log x, which are uniquely defined for
s 6= ki . If all critical numbers k1, . . . , kκ are simple roots, and each
ki does not lie in the set K(k1, . . . , ki−1, ki+1, . . . , kκ), then all
coefficients cs are constant; for s 6= ki , they are uniquely
determined; and for s = ki , they are arbitrary.
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Example
For the truncated solution (1.12)

K = {s = r + l(1− r) + m(1 + r), int. l ,m ≥ 0, l + m > 0}. (1.20)

Since there are no critical numbers, then all cs are constant and uniquely
determined in the expansion (1.19).
For the truncated solution (1.15) K = {s = 1 + 2l , int. l > 0}. If
Im (b/

√
−d) 6= 0, then there are no critical numbers, and all power

exponents s are odd integers greater than 1 in the expansion (1.19), and
coefficients cs are constant and uniquely determined. If Im (b/

√
−d) = 0,

then there is a unique critical number k1 = 1 + |b/
√
−d |, and

K(k1) = {s = 1 + 2l + m(k1 − 1), int. l ,m ≥ 0, l + m > 0.} (1.21)

Consequently, if the number k1 is not odd, then all cs are constant and
uniquely determined in the expansion (1.19) for s 6= k1, and ck1

is
arbitrary. Finally, if k1 is odd, then K(k1) =K, and cs is a uniquely
determined constant in the expansion (1.19) if s < k1; ck1

is a linear
function of log x with an arbitrary constant term; cs is a uniquely
determined polynomial in log x if s > k1.
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Complex power exponents

Expansions of solutions (1.3) with complex power exponents r and
s, where ωRe r > ωRe s, are found in a similar way.

Example
In the equation (1.8), for the truncated solution (1.12) with
complex r , Re r ∈ (−1, 1), the expansions (1.19) are also found by
the set (1.20). And for the truncated solution (1.15) with
Im (b/

√
−d) 6= 0 and Re k1 > 1, we obtain the expansion (1.19)

by the set (1.21).

Thus, in classical analysis, we encounter expansions in fractional
powers and with constant coefficients, but here we obtain
expansions in rather arbitrary complex powers of the independent
variable with coefficients that are polynomials in logarithms of this
variable. However, there are possible even more complicated
expansions of solutions.
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Types of expansions

As x → 0, consider asymptotic expansions of solutions to the
equation (1.2) of the form

y = crx r +
∑

s

csx s , (1.22)

where power exponents r and s are complex numbers without
points of accumulation, Re s ≥ Re r , Re s increase.
We define four types of expansions (1.22); the first three of which
have finite number of power exponents s with the same real part
Re s and Re s > Re r (Fig. 3).
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Type 1. cr and cs are constant (power expansions);
Type 2. cr is constant, cs are polynomials in log x
(power-logarithmic expansions);
Type 3. cr and cs are power series in decreasing powers of log x
(complicated expansions).
Type 4. There are infinitely many power exponents s with a fixed
Re s, and the convex hull of the points r and s from (1.22) in the
complex plane lies in the angle with the vertex at the point r , one
of the limiting rays of the angle parallel to the imaginary axis, and
the span of the angle being less than π (exotic expansions) (Figs. 4
and 5).
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In addition, we assume that the argument of the complex variable x
is limited at one side. The types of asymptotic expansions as
x → const and as x →∞ are defined in a similar way.
Similar technique is used for equations having small or big
parameters. The power exponents of these parameters are
accounted for in the same way as power exponents of variables
tending to zero or infinity. Such parameter ε can be considered as a
dependent variable, satisfying the equation ε′ = 0.
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The sixth Painlevé equation [3]

It has the form

y ′′ =
(y ′)2

2

(
1
y

+
1

y − 1
+

1
y − x

)
− y ′

(
1
x

+
1

x − 1
+

1
y − x

)
+

+
y(y − 1)(y − x)

x2(x − 1)2

[
a + b

x
y2 + c

x − 1
(y − 1)2 + d

x(x − 1)

(y − x)2

]
, (2.1)

where a, b, c , d are complex parameters, x and y are complex
variables, y ′ = dy/dx . The equation (2.1) has three singular points
x = 0, x = 1, and x =∞. After multiplying by common
denominator, we obtain the equation as a differential sum. Its
support and its polygon, in the case a 6= 0, b 6= 0, are shown in
Fig. 6.
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We found all asymptotic expansions of solutions to the equation
(2.1). They comprise 117 families. Among them, there are
expansions of all four types. In particular, for a = 1 and c = 0,
there is an expansion of the fourth type of the form

y = − 1
cos [log (C1x)]

+
∑

Re s≥1

csx s , (2.2)

where C1 is an arbitrary constant, the coefficients cs are constant
and uniquely determined. The support of the expansion (2.2) is
shown in Fig. 5, where r = i . For C1 = 1 and real x > 0, the
solution (2.2) has infinitely many poles accumulating at the point
x = 0.

1
2 cos(log x)

=
1

x−i + x i = x i
∞∑

k=0

(
−x2i)k = x−i

∞∑
k=0

(
−x−2i)k .
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The Beletsky equation (1956) [4]

(1 + e cos ν)δ′′ − 2e sin νδ′ + µ sin δ = 4e sin ν (2.3)

describes plane motions of a satellite around its mass center which
is moving along an elliptic orbit with an eccentricity
e = const ∈ [0, 1]. In the equation, ν is the independent and δ is
dependent variables, inertial parameter µ = const ∈ [−3, 3]. The
equation (2.3) is singular at e = 1, ν = π, since the coefficient at
the higher derivative vanishes at this point. We introduce local
coordinates x = ν − π and ε = 1− e at the singularity. Then the
equation (2.3) takes the form[
ε+

1
2
x2 + o(x2, ε)

]
d2δ

dx2 +2 [x + o(x , ε)]
dδ
dx

+µ sin δ = −4[x+o(x , ε)].

(2.4)
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The support and the polygon of
this equation for small
coordinates x , ε is shown in
Fig. 7. The boundary of the
polygon Γ consists of three edges
and two vertices. The unit vector
along the edge Γ

(1)
1 is (1, 0),

which corresponds to the variable
x . The unit vector along the edge
Γ2(1) is (1,−1/2), which
corresponds to the variable x/

√
ε.

Using a variable with this type of
behavior, we can regularize the
equation (2.3) at the singularity
and compute its solutions as
relaxation oscillations.
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In 1997, we studied the limit equations corresponding to the vertex
Γ
(0)
1 and to the edges Γ

(1)
1 , Γ

(1)
2 . Using their solutions, the limits of

solutions to the equation (2.3) are matched as e → 1. We found
that for e = 1, the limit families of 2π-periodic solutions form a
complicated structure: the family of symmetric solutions is twisted
into the spiral with infinite number of revolutions around the
solution C = {δ = −ν, µ = −2} (Fig. 8, schematically), and each
convolution of the spiral corresponds to its own family of
asymmetric 2π-periodic solutions having 4 spirals (2002) (Fig. 9,
schematically). Apparently, the solution C is an accumulating point
of infinitely many families of 2π-periodic solutions and of infinitely
many their spirals.
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Theory

Let X ∈ Cm be independent and Y ∈ Cn be dependent variables.
Suppose Z = (X ,Y ) ∈ Cm+n. A differential monomial a(Z ) is the
product of an ordinary monomial cZR = cz r1

1 . . . z rm+n
m+n , where

c = const ∈ C, R = (r1, . . . , rm+n) ∈ Rm+n, and a finite number of
derivatives of the form

∂lyj

∂x l1
1 . . . ∂x

lm
m

def
=

∂ lyj

∂X L , lj ≥ 0,
m∑

j=1

lj = l , L = (l1, . . . , lm).

A differential monomial a(X ) corresponds to its vector power
exponent Q(a) ∈ Rm+n formed by the following rules

Q(cZR) = R, Q(∂ lyj/∂X L) = (−L,Ej),

where Ej is unit vector. A product of monomials a · b corresponds
to the sum of their vector power exponents:

Q(ab) = Q(a) + Q(b).
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Theory

A differential sum is a sum of differential monomials

f (Z ) =
∑

ak(Z ).

A set S(f ) of vector power exponents Q(ak) is called the support
of the sum f (Z ). The closure of the convex hull Γ(f ) of the
support S(f ) is called the polyhedron of the sum f (Z ). Consider a
system of equations

fi (X ,Y ) = 0, i = 1, . . . , n, (4.1)

where fi are differential sums. Each equation fi = 0 corresponds to:

its support S(fi ), its polyhedron Γ(fi ) with the set of faces Γ
(di )
ij in

the main space Rm+n, the set of their normal cones U(di )
ij in the

dual space Rm+n
∗ , and the set of truncated equations

f̂ (di )
ij (X ,Y ) = 0.
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Theory

The set of truncated equations

f̂ (di )
iji

(X ,Y ) = 0, i = 1, . . . , n (4.2)

is the truncated system if the intersection

U(d1)
1j1
∩ . . . ∩U(dn)

njn
(4.3)

is not empty. A solution

yi = ϕi (X ), i = 1, . . . , n

to the system (4.1) is associated to its normal cone u ⊂ Rm+n. If
the normal cone u intersects with the cone (4.3), then the
asymptotic form yi = ϕ̂i (X ), i = 1, . . . , n of this solution satisfies
the truncated system (4.2), which is quasihomogeneous.
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The Euler-Poisson equations

Ap′ + (C − B)qr = Mg(y0γ3 − z0γ2), γ′1 = rγ2 − qγ3,
Bq′ + (A− C )pr = Mg(z0γ1 − x0γ3), γ′2 = pγ3 − rγ1,
Cr ′ + (B − A)pq = Mg(x0γ2 − y0γ1), γ′3 = qγ1 − pγ2,

(4.4)

where ′ = d/dt, describes the motion of a rigid body with a fixed
point. In (4.4), A,B,C , x0, y0, z0, and Mg are real constants. The
system (3.4) has three general first integrals. In the case B 6= C ,
x0 6= 0, y0 = z0 = 0 N. Kowalewski (1908) reduced the system
(4.4) to the system of two equations

f1
def
= σ̈τ + σ̇τ̇ /2 + a1 + a2σ + a3τ̇p + a4τ + a5p2 = 0,

f2
def
= στ̈ + σ̇τ̇ /2 + b1 + b2σ̇p + b3σ + b4τ + b5p2 = 0,

(4.5)

where the dot means differentiation with respect to the new
independent variable p, σ and τ are new dependent variables,
ai , bi = const.
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The Euler-Poisson equations

This system has two general first integrals. Generically, the
supports S(fi ) and polyhedrons Γ(fi ) of both equations (4.5)
coincide; they are shown in Fig. 10.
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The Euler-Poisson equations

We found all power-logarithmic expansions of solutions to the
system (4.5) as p → 0 and as p →∞ (they comprise 24 families)
and 4 families of complicated expansions of solutions. This system
does not have expansions of the 4-th type. Using power expansions
we obtained all exact solutions of the form of finite sums of real
powers of the variable p with complex coefficients. They comprise
12 families. Among them, 7 families were known. All new families
are complex.
In the case

A = B, Mgx0/B = 1, y0 = z0 = 0, C/B = c

the system (4.4) has a unique parameter c ∈ (0, 2]. The system
(4.4) has 4 two-parameter families of stationary solutions. On each
of these families there are sets Dj of real stationary solutions near
which the system (4.4) is locally integrable as well as the sets Rj of
stationary solutions near which the system (4.4) is locally
nonintegrable.
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The Euler-Poisson equations

In Fig. 11, there shown the sets
D1, D2, D3 and the curves R1–R4
for one of these four families with
x = 1/c and y = p0γ0

1 , where
(p, q, r , γ1, γ2, γ3) =
(p0, 0, 0,±1, 0, 0) is a stationary
solution.
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Other applications of Power Geometry

1 Asymptotic forms of solutions to Painlevé equations
2 Periodic solutions of the restricted three-body problem
3 Analysis of the local integrability of ODE
4 Boundary layer on a needle
5 Evolution of the turbulent flow
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