
Steklov Mathematical InstituteMoscow State University

Geometry, Topology,Algebra and Number Theory,Applications
The International Conference dedicated to the 120th anniversary ofBoris Nikolaevich Delone (1890-1980)

AbstractsAugust 16�20, 2010.Moscow



The International Conference �Geometry, Topology, Algebra and Number Theory, Applications�dedicated to the 120th anniversary of Boris Nikolaevich Delone (1890-1980) is supported bythe Russian Academy of Sciences and the Russian Foundation for Basic Research.
Program Committee.S. Novikov (chair), V. Buchstaber (vice-chair), N. Dolbilin (vice-chair), Yu. Burago, F. Cohen,R. Connelly, A. Dress, H. Edelsbrunner, R. Erdahl, S. Godunov, P. Gruber, A. Mishchenko,O. Musin, Yu. Nesterenko, A. Parshin, Yu. Reshetnyak, M. Senechal, M. Shtogrin, K. Sugihara,M. Tanemura, B. Venkov, A. Yakovlev, G. Ziegler.
Organizing Committee.V .Kozlov (chair), A. Sergeev (vice-chair), V. Chubarikov (vice-chair), A. Garber (secretary),F. Damian, N. Dolbilin, A. Gaifullin, S. Konovalov, V. Makarov, A. Maltsev, D. Millionschikov,T. Panov, M. Shtogrin.





AbstractsEiichi Bannai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Imre B�ar�any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Dima Burago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Frederic Cohen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Alexander Gaifullin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Peter Gruber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Deok-Soo Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Mikiya Masuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Yuri Matiyasevich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Yuri Nesterenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Vladimir Platonov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Sergey Yuzvinsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Section �Geometry�Arseniy Akopyan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Victor Alexandrov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Yuri Aminov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Evgenii Avksentjev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Etsuko Bannai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25K�aroly Bezdek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Evgenii Boico and Ivan Gutsul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Sergey Buyalo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Florin Damian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Rostislav Devyatov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Vladimir Dolnikov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Robert Erdahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Dirk Frettloeh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Alexey Garber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Andrey Gavrilyuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Elena Gorskaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Vyacheslav Grishukhin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Jin-ichi Itoh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Yoshiaki Itoh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Ivan Izmestiev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Andrei Kupavskii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Alexander Magazinov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Petr Makarov and Vitalii Makarov . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Evgenii Marinin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Oleg Mokhov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Chie Nara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Viacheslav Nikulin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Evgenii Olin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Gaiane Panina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Alexandru Popa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Vladimir Protasov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Andrei Raigorodskii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694



Marjorie Senechal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Mikhail Skopenkov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Anton Shutov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Iskander Taimanov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Alexey Tarasov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Andrey Voynov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Elizaveta Zamorzaeva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Tatyana Zvereva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Section �Topology�Petr Akhmet'ev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Anthony Bahri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Yaroslav Bazaikin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Daniel M. Burns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Vladimir Chernov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Suyoung Choi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Graham Denham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Natalia Dobrinskaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Nickolai Erokhovets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Samuel Gitler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Dmitry Gugnin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Shizuo Kaji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Roman Karasev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Askold Khovanskii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Shintar�o Kuroki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Andrey Kustarev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Lev Lokutsievskiy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Santiago L�opez de Medrano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Zhi Lu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Andrei Malyutin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Alexander Mishchenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Luis Montejano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Abdigappar Narmanov and Anvarjon Sharipov . . . . . . . . . . . . . . . . . . . . . . 108Vladimir Nezhinskij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Yasuzo Nishimura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Crichton L. Ogle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Hiroshi Sato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Thomas Schick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Vladimir Sharko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Georgy Sharygin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Arkadiy Skopenkov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Svjetlana Terzi�c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121Stephen Theriault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122Yury Ustinovsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Alexander Veselov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Vadim Volodin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124Takahiko Yoshida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Rade T. �Zivaljevi�c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295



Section �Algebra and Number Theory�Vyacheslav Artamonov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Alexander Bruno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131OlegN.German . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Sergey Gorchinskiy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Oleg Karpenkov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Nikolay G. Moshchevitin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Denis Osipov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Vladimir Parusnikov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Vladimir Popov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Antonio Calixto de Souza Filho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Nadezda V. Timofeeva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Alexey Ustinov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Section �Applications�Igor Bogolubsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144Alexander Bruno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Nikolai Dolbilin and Masaharu Tanemura . . . . . . . . . . . . . . . . . . . . . . . . . 146Peter Engel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Vladimir Garanzha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149Alexey Gurin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Vladimir Klyachin and Alexander Shirokiy . . . . . . . . . . . . . . . . . . . . . . . . 152Yuri Kordyukov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154Mikhail Kovalev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156Satoshi Kuriki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158Alexander Lozhkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160Andrey Maleev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Mikhail Monastyrsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Oleg R. Musin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166Evgenii Scepin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167Mikhail Shtogrin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168Yoshinori Teshima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170Yoshinori Teshima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172Yuri Voytelhovsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174Rien van de Weygaert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6



Plenary talksA survey on spherical designs and Euclidean designsEiichi BannaiKyushu University, Japan.bannai@math.kyushu-u.ac.jpOur aim is to study good subsets consisting of �nitely many points of the sphere and/or ofEuclidean space.Sometimes we consider not only �nite subsets but also �nite subsets with weight functions,i.e., cubature formulas in analysis. In this talk, we start with the de�nition of spherical t-designdue to Delsarte-Goethals-Seidel (1977). Then we study spherical t-designs from the viewpointof algebraic combinatorics. Here, association schemes play an important role. There are naturallower bounds for the size of spherical t-designs, and those which attain one of such lower boundsare called tight spherical t-designs. We discuss the known examples of tight spherical t-designs,and survey the current status of the classi�cation of tight spherical t-designs.Another main purpose of this talk is to discuss the concept of Euclidean t-designs which aretwo step generalization of spherical t-designs. Natural lower bounds for the size of Euclidean
t-designs, as well as the concept of tight Euclidean t-designs will be discussed. We review theexamples and the current status of the classi�cation problem of tight Euclidean t-designs. Somehighlights will include our recent complete classi�cation of tight Euclidean 9-designs on twoconcentric spheres (due to Etsuko Bannai and myself), as well as the new discovery of a tight6-design on two concentric spheres (due to Etsuko Bannai, Junichi Shigezumi and myself).We discuss the connection between Euclidean designs and the theory of cubature formulasin analysis, and also discuss the role of coherent con�gurations (generalization of associationschemes) in the study of Euclidean t-designs.
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Extremal Problems for Convex Lattice PolytopesImre B�ar�anyAlfred Renyi Institute of Mathematics, Hungary and University College London, UnitedKingdom.barany@renyi.huAbstract. In this survey talk I will present several extremal problems, and some solutions,concerning convex lattice polytopes. A polytope is called a lattice polytope if all of its verticesbelong to the integer lattice Zd. Let P(n, d) denote the family of all convex lattice polytopes,of positive volume, in Rd with n vertices. The following extremal problems will be considered.1. minimal volume for P ∈ P(n, d),2. minimal surface area for P ∈ P(n, d),3. minimal lattice width for P ∈ P(n, d),4. maximal n such that a (large) convex set K ⊂ Rd contains and element of P(n, d), inother words, the maximal number of lattice points in K that are in convex position.These problems are related to a question of V I Arnold from 1980 asking for the numberof (equivalence classes of) lattice polytopes of volume (at most) V in d-dimensional space.Here two convex lattice polytopes are equivalent if one can be carried to the other by a latticepreserving a�ne transformation.
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Boundary rigidity, volume minimality, and minimalsurfaces in L∞: a survey1Dima BuragoPenn State University, USA.dburago@gmail.comA Riemannian manifold with boundary is said to be boundary rigid if its metric is uniquelydetermined by the boundary distance function, that is the restriction of the distance function tothe boundary. Loosely speaking, this means that the Riemannian metric can be recovered frommeasuring distances between boundary points only. The goal is to show that certain classes ofmetrics are boundary rigid (and, ideally, to suggest a procedure for recovering the metric).To visualize that, imagine that one wants to �nd out what the Earth is made of. Moregenerally, one wants to �nd out what is inside a solid body made of di�erent materials (in otherwords, properties of the medium change from point to point). The speed of sound depends onthe material. One can "tap"at some points of the surface of the body and "listen when thesound gets to other points". The question is if this information is enough to determine what isinside.This problem has been extensively studied from PDE viewpoint: the distance betweenboundary points can be interpreted as a "travel time"for a solution of the wave equation.Hence this becomes a classic Inverse Problem when we have some information about solutionsof a certain PDE and want to recover its coe�cients. For instance such problems naturally arisein geophysics (when we want to �nd out what is inside the Earth by sending sound waves),medical imaging etc.In a joint project with S. Ivanov we suggest an alternative geometric approach to thisproblem. In our earlier work, using this approach we were able to show boundary rigidity formetrics close to �at ones (in all dimensions), thus giving the �rst class of boundary rigid metricsof non�constant curvature beyond two dimensions. We were now able to extend this result toinclude metrics close to a hyperbolic one.The approach is grew up from another long-term project of studying surface area functionalsin normed spaces, which we have been working on it for more than ten years. There are a numberof related issues regarding area-minimizing surfaces in Riemannian manifold. The talk gives anon-technical survey of ideas involved. It assumes no background in inverse problems and issupposed to be accessible to a general math audience (in other words, we will not get into anytechnical details of the proofs).

1on a joint work with S. Ivanov. 9



On the polyhedral product functor: a method ofdecomposition for moment-angle complexesFrederic CohenUniversity of Rochester, USA.cohf@math.rochester.eduSpaces which are now called (generalized) moment-angle complexes or values of the �polyhedralproduct functor� have been studied by topologists since the 1960's thesis of G. Porter. In the1970's E. B. Vinberg developed some of their features. In the late 1980's S. Lopez de Medranodeveloped beautiful properties of intersections of quadrics with recent further developments injoint work with S. Gitler.In seminal work during the early 1990's, M. Davis and T. Januszkiewicz introducedmanifolds now often called quasi-toric manifolds. They showed that every quasi-toric manifoldis the quotient of a moment-angle complex by the free action of a real torus. The moment-anglecomplex is denoted Z(K; (D2, S1)) where K is a �nite simplicial complex.The integral cohomology of the spaces Z(K; (D2, S1)) has been studied by Goresky-MacPherson, Buchstaber-Panov, Panov, Baskakov, Hochster, and Franz. Among others whohave worked extensively on generalized moment-angle complexes are Notbohm-Ray, Grbic-Theriault, Strickland and Kamiyama-Tsukuda. Buchstaber-Panov synthesized several di�erentdevelopments in this subject. The direction of this lecture is guided by work of Denham-Suciu.This lecture is a survey of recent work on generalized moment-angle complexes as well asrelated spaces. One of the results given here is a natural decomposition for the suspension ofthe generalized moment-angle complex, the value of the suspension of the �polyhedral productfunctor".Since the decomposition is geometric, an analogous homological decomposition for ageneralized moment-angle complex applies for any homology theory. This last decompositionspecializes to the homological decompositions in the work of several authors cited above.Furthermore, this decomposition gives an additive decomposition for the Stanley-Reisner ring ofa �nite simplicial complex extended to other natural settings. Applications to the real K-theoryof moment-angle complexes as well as associated cup-product structures are given. Applicationsto robotic motion are illustrated via video clips.This lecture is based on joint work with A. Bahri, M. Bendersky, and S. Gitler. Theapplication to robotics is based on joint work with D. Koditschek and G. C. Lynch.
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Sets of links of vertices of triangulated manifolds andcombinatorial approach to Steenrod's problem onrealisation of cyclesAlexander Gaifullin1Moscow State University, Russia.Institute for Information Transmission Problems, Russiagaifull@higeom.math.msu.suTo each triangulated manifold one can assign the set of links of its vertices. The link of avertex describes the local combinatorial structure of the triangulation in a neighbourhood ofthe vertex. Thus the set of links of vertices of a triangulation can be interpreted as the set oflocal combinatorial data characterizing the triangulation. We consider a compatibility problemfor such local combinatorial data. This problem can be formulated in the following way. Fora given set of combinatorial spheres, does there exist a triangulated manifold with such set oflinks of vertices? We are mostly interested in an oriented version of this problem. Our aim is toobtain a non-trivial su�cient condition for compatibility of a set of links of vertices. We shalldescribe an explicit construction that, under certain natural conditions, allows us to realisea multiple of a given set of oriented combinatorial spheres as the set of links of vertices of acombinatorial manifold.Further, we are going to discuss an application of this construction to N. Steenrod's problemon realisation of cycles. It is well known that according to a result of R.Thom, any n-dimensionalintegral homology class z of any topological space X can be realised with some multiplicity byan image of an oriented smooth closed manifold Nn. Our new approach is based on an explicitcombinatorial procedure for resolving singularities of a cycle. We give an explicit combinatorialconstruction that, for a given homology class z, yields a manifold Nn and its mapping to Xwhich realises the class z with some multiplicity. Moreover, the obtained manifold Nn appearsto be a �nite-fold non-rami�ed covering over a very interesting special manifoldMn, which canbe regarded either as an isospectral manifold of symmetric tridiagonal real (n + 1) × (n + 1)-matrices or as a small covering over a permutohedron.

1The work is partially supproted by the Grant of the President of Russian Federation for Support of YoungRussian Scientists (grant 4220.2009.1) and the Russian Foundation for Basic Research (grant 08-01-00541).11



Packing and Covering of Convex BodiesPeter GruberVienna University of Technology, Austria.peter.gruber@tuwien.ac.at1 IntroductionLet C be an o-symmetric convex body and L a lattice in Ed. Then δ(C) and ϑ(C) denotethe maximum lattice packing, resp. the minimum lattice covering density of C. Let % ≥ 0 bemaximum and σ ≥ 0 minimum such that L provides a packing of %C and a covering of σC.Then δ(C,L) and ϑ(C,L) are the densities of this packing resp. this covering. Let k(C,L) bethe kissing number of the lattice packing of %C provided by L and k(C), k(C) the minimum,resp. maximum kissing number of a lattice packing of C of maximum density.Over the last hundred years important contributions to the following problems have beengiven:(i) Upper and lower estimates for δ(C), ϑ(C) and δ(Bd), ϑ(Bd) (Minkowski-Hlawka, Rogers).(ii) Upper and lower estimates for k(C,L), k(C), k(C) (Minkowski, Swinnerton-Dyer).(iii) Criteria for local maxima of δ(Bd, L) and local minima of ϑ(Bd, L) (Voronoi, Barnes andDickson, Delone et al, Sch�urmann and Vallentin).Concerning the following problems, not much progress has been achieved.(iv) Uniqueness of densest lattice packings and thinnest lattice coverings.(v) Determination of densest lattice packings and thinnest lattice coverings, algorithms.(Exception: Betke�Henk)In this lecture we make some remarks on problems (iv), (iii) and (ii).2 Uniqueness of Densest Lattice Packing and Thinnest LatticeCoveringIn the rare cases when the densest lattice packings or the thinnest lattice coverings of a convexbody are known, these results may, sometimes, be interpreted of (possibly weak) uniquenessresults. In the case of Bd there are, up to rotation, only �nitely many densest lattice packings.This is a consequence of a theorem of Voronoi. Analogous statement holds for coverings asshown by Sch�urmann and Vallentin. Except for these cases we are not aware of any pertinentuniqueness theorem.Using Baire categories, one can prove the following resultsTheorem 1. There is a constant a(d) ≥ 1, such that for a generic o-symmetric convex body
C in Ed there are at most a(d) lattice packings of maximum density. For d = 2, 3 one may put
a(d) = 1.Theorem 2. There is a constant b(d) ≥ 1, such that for a generic o-symmetric convex body
C in Ed there are at most b(d) lattice coverings of minimum density. For d = 2 one may put
b(d) = 1. 12



Problem 1. Show that a(d) = b(d) = 1 for all d,i.e., the densest lattice packings and the thinnest lattice coverings of a generic §o-symmetricconvex body are unique in all dimensions.3 Lattice Packings and Coverings of Extreme DensityA classical criterion of Voronoi says that a positive de�nite quadratic form on Ed is extreme(i.e. locally maximum among all neighbouring form) if and only if it is perfect and eutactic.Equivalently, a lattice packing of Bd has locally maximum density if and only if it is perfectand eutactic.Using the following re�ned notions of maximality of (local, upper)semi-stationarity,stationarity,maximality, andultra-maximalityand the Voronoi type notions ofsemi-eutaxy,eutaxy, andperfectionthe following results hold:Theorem 3. The following statements on Bd, L, δ hold:(i) L is semi-stationary if and only if it is semi-eutactic.(ii) No lattice is stationary.(iii) L is maximum if and only if it is perfect and eutactic.(iv) L is ultra-maximum if and only if it is perfect and eutactic.Statement (iii) is Voronoi's criterion. The unexpected consequence is that each lattice packingof maximum density has already ultra-maximum density.Using suitable generalizations of the extremum and Voronoi type notions stated earlier, onecan prove the following partial extension of Theorem 3, where C is a smooth and strictly convex
o-symmetric convex body.Theorem 4. The following statements on C,L, δ hold:(i) L is semi-stationary if and only if it is semi-eutactic.(ii) No lattice is stationary.(iii) L is ultra-maximum if and only if it is perfect and eutactic.The problem to characterize maximum lattices remains open.Problem 2. Show that in su�ciently high dimensions for a generic o-symmetric convex body
C the densest lattice packing is unique and ultra-maximum.13



For coverings we could prove only the following criterion, where we used the notions of (local,lower) semi-stationarity,stationarity, andultra-minimalityand the Voronoi type notions ofpara-completeness,completeness, andultra-completeness.Theorem 5. For Bd, L, ϑ the following statements hold:(i) L is semi-stationary if and only if it is para-complete.(ii) L is stationary if and only if it is complete.(iii) L is ultra-minimum if and only if it is ultra-complete.The problem to characterize minimum lattices remains open.Problem 3. Extend Theorem 5 to o-symmetric convex bodies and show that for a generico-symmetric convex body the thinnest lattice covering is unique and ultra-minimum.4 Kissing Number of Generic Convex BodiesA result of Swinnerton-Dyer implies that for each o-symmetric convex body C holds
k(C) ≥ d(d+ 1),while the author has shown that in the generic case holds
k(C) ≤ 2d2.(In the general case k(C) ≤ 3d − 1 by an old estimate of Minkowski.)Problem 4. Show that in the generic case the densest lattice packing is unique and

k(C) = k(C) = 2d2.References[1] Gruber, P.M., Convex and discrete geometry, Grundl. Math. Wiss. 336, Springer, Berlin, Heidelberg, NewYork 2007[2] Gruber, P.M., Application of an idea of Vorono�i to lattice packing, in preparation[3] Gruber, P.M., Extremum properties of lattice packing and covering with circles, in preparation[4] Gruber, P.M., Vorono�i type criteria for lattice coverings with balls, in preparation[5] Gruber, P.M., On the uniqueness of lattice packing and covering of extreme density, in preparation[6] Gruber, P.M., Application of an idea of Vorono�i, a report, in preparation14



The Quasi-triangulation and The Beta-complex: Theoryand ApplicationsDeok-Soo KimHanyang University, Korea.dskim@hanyang.ac.kr, http://voronoi.hanyang.ac.krThe Voronoi/Delaunay structures are everywhere in nature and useful for understandingthe spatial structure of a point set. Being powerful computational tools, their generalizationhas been made in various directions including the Voronoi diagram of spherical balls. TheVoronoi diagram of spherical balls nicely de�nes the proximity among the balls where theEuclidean distance is used from the spherical boundary of balls. Like its counterparts of theordinary Voronoi diagram of points or the power diagram, the dual structure can be moreconvenient in both representing and traversing the topology structure of the Voronoi diagram.However, unlike the Delaunay triangulation and the regular triangulation, the dual structure ofthe Voronoi diagram of balls, the quasi-triangulation, is not a simplicial complex and creates anumber of anomaly cases which cause di�culties in the representation and traversal of topology.This talk will introduce the Voronoi diagram of balls and its quasi-triangulation, particularlyin the three-dimensional space. Given its de�nition, the properties of the quasi-triangulation,including the anomalies, will be presented with the underlying data structure to store itstopology. Based on the quasi-triangulation, we de�ne a new geometric structure called the beta-complex which concisely yet e�ciently represents the proximity among all spherical balls withinthe boundary of the input ball set, where its boundary is appropriately de�ned. It turns out thatthus de�ned the beta-complex can be used to e�ciently solve geometry and topology problemsfor the ball set. Among many potential application areas, the structural molecular biologyis the utmost application area because the beta-complex immediately and e�ciently solvesmany geometry problems related to important structural molecular biology problems: Examplesinclude the computation of the molecular surface, the extraction of pockets on the boundaryof molecule, the computation of areas of various types of surfaces de�ned on a molecule, thecomputation of various kinds of volumes de�ned on a molecule, the docking simulation, etc. Wewill also demonstrate our molecular modeling and analysis software, BetaMol, which is entirelybased on the uni�ed, single representation of the quasi-triangulation and the beta-complex.
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Cohomological rigidity problems in toric topologyMikiya MasudaOsaka City University, Japan.masuda@sci.osaka-cu.ac.jpCohomological rigidity problems in toric topologyClassi�cation of compact smooth toric varieties (which we call toric manifolds) as varietiesreduces to classi�cation of their fans as is well-known. However, not much is known forclassi�cation of toric manifolds as smooth manifolds. One interesting and naive question isCohomological rigidity problem for toric manifolds ([3]). Are two toric manifoldsdi�eomorphic (or homeomorphic) if their cohomology rings are isomorphic as graded rings?Some partial a�rmative solution and no counterexample is known to the problem so far.Similar questions can be asked for polytopes ([1]), real toric manifolds ([2]) and symplectic toricmanifolds ([4]). In this talk I will discuss these problems.References[1] S. Choi, T. Panov and D. Y. Suh, Toric cohomological rigidity of simple convex polytopes, arxiv0807.4800, to appear in Jour. London Math. Soc.[2] Y. Kamishima and M. Masuda, Cohomological rigidity of real Bott manifolds, Algebraic &Geometric Topology 9 (2009) 2479-2502[3] M. Masuda and D. Y. Suh, Classi�cation problems of toric manifolds via topology, Toric Topology,Contemp. Math. 460 (2008), 273�286, arXiv:0709.4579.[4] D. McDu�, The topology of toric symplectic manifolds, arXiv:1004.3227
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What can we do with Diophantine problems and what wecannot doYuri MatiyasevichSaint-Petersburg branch of Steklov Mathematical Institute, Saint-Petersburg.yumat@pdmi.ras.ru, http://logic.pdmi.ras.ru/~yumatIn the talk I'll survey numerous theorems (obtained mainly by logicians and computerscientists) about impossibility of algorithms for diverse Diophantine problems. However, such�negative� results are often obtained as corollaries of �positive� theorems about possibilities toconstruct Diophantine problems with special properties. Below are just two examples.1. We can �nd a particular polynomial P (a, x1, . . . , xn) with integer coef�cients such that
• for every value of the parameter a the equation

P (a, x1, . . . , xn) = y + 4y (∗)has at most one solution;
• for every function β(a) de�ned and e�ectively computable for all values of a there is anumber aβ such that for a = aβ the equation (∗) has a solution x1 = x1,β , . . . , xn =
xn,β, y = yβ and this (unique) solution satis�es the inequality

max{x1,β, . . . , xn,β, yβ} > β(aβ).In other words, (∗) is a �principally une�ectivizable� equation, that is, we can bound the numberof its solutions (by 1 for every value of the parameter) but cannot bound solutions themselvesby any computable function of the parameter.Open problem. Could we replace (∗) by a suitable genuine Diophantine equation, that is,without exponentiation?2. We can �nd natural numbers d and n such that for every polynomi-al P (a1, . . . , am, x1, . . . , xn) with integer coe�cients (having any degree and arbitrary number ofvariables) we can e�ectively construct another polynomialQ(a1, . . . , am, y1, . . . , yn) with integercoe�cient with m + n variables having degree d with respect to variables y1, . . . , yn and suchthat both Diophantine equations
P (a1, . . . , am, x1, . . . , xn) = 0 (∗∗)and
Q(a1, . . . , am, y1, . . . , yn) = 0 (∗ ∗ ∗)are solvable (in x1, . . . , xn and y1, . . . , yn respectively) for the same values of the parameters

a1, . . . , am.In other words, the traditional classi�cations of di�culties of Diophantine equations(�equations of degree 1�, �equations of degree 2�, . . . , and �equations in one unknown�, �equationsin two unknowns�, . . . ) collapse from some point on.17



Today we know that for such universal bound 〈d,n〉 we can take any of the pairs
〈4, 58〉, 〈8, 38〉, 〈12, 32〉, 〈16, 29〉, 〈20, 28〉, 〈24, 26〉, 〈28, 25〉,
〈36, 24〉, 〈96, 21〉, 〈2668, 19〉, 〈2× 105, 14〉, 〈6.6× 1043, 13〉,
〈1.3× 1044, 12〉, 〈4.6× 1044, 11〉, 〈8.6× 1044, 10〉, 〈1.6× 1045, 9〉in the case when the unknowns range over natural numbers; in the case when the unknownsrange over integers the values are a bit bigger. If we allow (iterated) usage of exponentialfunction 2z in construction of equation (∗ ∗ ∗), then the number of unknowns can be as smallas n = 3.Open problem. Could we �nd similar universal bound 〈d̃,n〉 where d̃ would be the totaldegree of the polynomial Q(a1, . . . , am, y1, . . . , yn), that is, with respect to all the variables

a1, . . . , am, y1, . . . , yn?References[1] Ìàòèÿñåâè÷ Þ. Â. Äåñÿòàÿ ïðîáëåìà Ãèëüáåðòà. Íàóêà, Ôèçìàòëèò, Ìîñêâà, (1993). Englishtranslation: Matiyasevich, Yu. V. Hilbert's Tenth Problem. MIT Press, Cambridge (Massachusetts)London (1993). French translation: Matiiassevitch Youri, Le dixi�eme Probl�eme de Hilbert, Masson,Paris Milan Barselone (1995). URL: http://logic.pdmi.ras.ru/~yumat/H10Pbook.
E�ective results in diophantine equationsYuri NesterenkoMoscow State University, Moscow.nester@orc.ruWe plan to give a survey of e�ective results and methods concerning estimates for the numberof solutions of diophantine equations as well as results concerning bounds for the solutions.1. Discussion of Delone's results about diophantine equations.2. Approximation of algebraic numbers by rationals (from A. Thue to K. Roth).3. Bounds for linear forms in algebraic numbers and Subspace Theorem (W. Schmidt).4. Linear forms in logarithms of algebraic numbers (A. Gelfond, A. Baker and followers).E®ective bounds for solutions of diophantine equations.5. Catalan's problem.6. Algorithms and computers.
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Number-theoretical properties of hyperelliptic �elds.Vladimir PlatonovNIISI RAS, Moscow.platonov@niisi.ras.ru
Resonance varieties of arrangement complements, Milnor�ber, and Bernstein polynomialsSergey YuzvinskyUniversity of Oregon, USA.yuz@oregon.eduIn the talk we recall the de�nition of the resonance varieties and their main properties forhyperplane complements. Then we discuss their most recent applications to cohomology ofMilnor �ber and roots of Bernstein polynomials for products of linear forms.
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Section �Geometry�The extremal spheres theorems1Arseniy AkopyanInstitute for Systems Analysis, Moscow.akopjan@gmail.comConsider a polygon P and all neighboring circles (circles going through three consecutivevertices of P ). We say that a neighboring circle is extremal if it is empty (no vertices of Pinside) or full (no vertices of P outside). It is well known that for any convex polygon thereexist at least two empty and at least two full circles, i.e. at least four extremal circles. In 1990Schatteman considered a generalization of this theorem for convex polytopes in d-dimensionalEuclidean space. Namely, he claimed that there exist at least 2d extremal neighboring spheres.We show that there are certain gaps in Schatteman's proof. His proof is based on theBruggesser-Mani shelling method. We show that using this method it is possible to prove thatthere are at least d + 1 extremal neighboring spheres. However, the existence problem of 2dextremal neighboring spheres is still open.

1This is a joint work with Alexey Glazyrin, Oleg Musin, Alexey Tarasov.20



Algebra versus analysis in the theory of �exible polyhedraVictor Alexandrov1Sobolev Mathematical Institute, Novosibirsk.alex@math.nsc.ruA polyhedron (more precisely, a polyhedral surface) is said to be �exible if its spatial shapecan be changed continuously due to changes of its dihedral angles only, i. e., if every face remainsself-congruent during the �ex. In other words, a polyhedron P0 is �exible if it is included in acontinuous family {Pt}, 0 6 t 6 1, of polyhedra Pt such that, for every t, the correspondingfaces of P0 and Pt are congruent while polyhedra P0 and Pt are not congruent. In general,self-intersections are possible both for P0 and Pt. Without loss of generality we assume that thefaces of the polyhedra are triangular.Flexible self-intersection free sphere-homeomorphic polyhedra in Euclidean 3-space wereconstructed by R. Connelly [3]. During last 30 years, many non-trivial properties of �exiblepolyhedra were discovered. We formulate two of them in a form that is convenient for ourpurposes.Let P be a closed oriented polyhedron in R3, let E be the set of its edges, let |`| be thelength of edge `, and let α(`) be the dihedral angle of P at edge ` measured from inside of P .The sum
M(P ) =

1

2

∑

`∈E
|`|
(
π − α(`)

)is called the total mean curvature of P .Theorem 1. Let P0 be a �exible polyhedron in R3 and let {Pt}, 0 6 t 6 1, be its �ex. Thetotal mean curvature M(Pt) is independent of t.Theorem 1 was obtained by R. Alexander [1] as an obvious corollary of Theorem 2, whilethe latter was proved in [1] with the help of the Stokes theorem, i. e., by means of Analysis.Theorem 2. Let P be a closed oriented polyhedron in R3, let w be its in�nitesimal �ex,and let P (t) = {r + tw|r ∈ P}. Then d
dt
|
t=0
M

(
P (t)

)
= 0.Another important property of the �exible polyhedra is given by the following theorem.Theorem 3. If {Pt} is a �ex of an orientable polyhedron in R3, then the oriented volumeof Pt is constant in t.Theorem 3 was obtained by I.Kh. Sabitov [4] as an obvious corollary of Theorem 4, whilethe latter was proved in [4] with the help of the theory of resultants, i. e., by means of Algebra.Theorem 4. For the set PK of all (not necessarily �exible) closed polyhedra in R3 withtriangular faces and with a prescribed combinatorial structure K there exists a universalpolynomial pK of a single variable whose coe�cients are universal polynomials in the edgelengths of a polyhedron P ∈ PK and such that the oriented the volume of any P ∈ PK is a rootof pK.We prove that Theorem 1 cannot be proved by means of Algebra and Theorem 3 cannotbe proved by means of Analisis. In particular, we prove the followng theorem that may be ofindepented interest.Theorem 5. The total mean curvature of any closed oriented polyhedron in R3 is not analgebraic function of its edge lengths.Full text of this talk is available in [2].1The author is supported by the Russian Foundation for Basic Research (grant 10�01�91000�ANF)and the Federal Program `Research and educational resourses of innovative Russia in 2009�2013' (contract02.740.11.0457). 21



References[1] R. Alexander, Lipschitzian mappings and total mean curvature of polyhedral surfaces, I,Trans. Amer. Math. Soc. 288 (1985), 661�678.[2] V. Alexandrov, Algebra versus analysis in the theory of �exible polyhedra, to appear inAequationes Math., available at arXiv:0902.0186 [math.MG].[3] R. Connelly, A counterexample to the rigidity conjecture for polyhedra, Inst. Hautes�Etudes Sci. Publ. Math. 47 (1977), 333�338.[4] I.Kh. Sabitov, The volume of a polyhedron as a function of its metric (in Russian),Fundam. Prikl. Mat. 2 (1996), 1235�1246.
On submanifolds of negative curvature in Euclidean spacesYuri AminovB.Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, Ukraine.aminov@ilt.kharkov.uaIn the theory of submanifolds with negative curvature there exist some number of interestingand unsolved problems, connected with in�uence of curvature and codimention on submanifold.We will exposer results about isometric immersions of the Lobachevsky space into Euclideanspaces, as well we will give one method to construct di�erent isometric immersions with non�at normal connection.By using the Rozendorn surface, that is an isometric immersions of the Lobachevsky planeinto E5 in form of regular surface F 2, we construct 3-dimensional submanifold F 3 in F 5, contains
F 2 and such that the sectional curvature of F 3 for plane, tangent F 2 , is negative and separatefrom zero.
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Ìåòðè÷åñêèå ñâîéñòâà ëîìàíûõ ÏîíñåëåÅâãåíèé ÀâêñåíòüåâÌîñêîâñêèé Ãîñóäàðñòâåííûé Óíèâåðñèòåò, Ìîñêâà.avksentjev@mail.ruÒåîðåìû î çàìûêàíèè, èëè òåîðåìû òèïà Ïîíñåëå, øèðîêî èçó÷àþòñÿ â ëèòåðàòóðåè ïðèìåíÿþòñÿ â êëàññè÷åñêîé ãåîìåòðèè, òåîðèè àëãåáðà-è÷åñêèõ êðèâûõ, êîìïëåêñíîìàíàëèçå, äèôôåðåíöèàëüíûõ óðàâíåíèÿõ (ñì. áèáëèîãðàôèþ â [2]�[4]). Ìû îãðàíè÷èìñÿñëó÷àåì äâóõ îêðóæíîñòåé.Âåçäå äàëåå α è β - äâå îêðóæíîñòè (β ëåæèò âíóòðè α) ðàäèóñîâ R, r, ðàññòîÿíèåìåæäó öåíòðàìè êîòîðûõ ðàâíî d. Ïîä ëîìàíîé Ïîíñåëå ýòèõ îêðóæíîñòåé áóäåì ïîíè-ìàòü ëîìàíóþ v1 . . . vn, ó êîòîðîé âñå âåðøèíû - A1, A2, . . . , An+1 - ëåæàò íà îêðóæíîñòè
α, à âñå çâåíüÿ - v1, v2, . . . , vn - êàñàþòñÿ β. Åñëè ëîìàíàÿ çàìêíóòà, ò.å. An+1 = A1, è íåèìååò ñàìîïåðå-ñå÷åíèé, òî áóäåì åå íàçûâàòü ìíîãîóãîëüíèêîì Ïîíñåëå.Ìû ïðåäñòàâëÿåì ñëåäóþùèå ðåçóëüòàòû:1) ïîëó÷åíî îáîáùåíèå (òåîðåìà 1) è íîâîå äîêàçàòåëüñòâî (ãåîìåòðè-÷åñêîå) òåîðåìûÐàäè÷à è Êàëèìàíà [1];2) ïîëó÷åí îáùèé ïðèíöèï íàõîæäåíèÿ ôîðìóë íà óñëîâèÿ çàìûêàíèÿ äëÿ äâóõ îêðóæ-íîñòåé (òåîðåìà 2) è3) ñâÿçü òàêèõ ôîðìóë äëÿ n è 2n (òåîðåìà 3);4) ïîëó÷åíû óñëîâèÿ çàìûêàíèÿ äëÿ ëîìàíûõ Ïîíñåëå, îáîáùàþùèå èçâåñòíûå ôîðìóëûÝéëåðà äëÿ n = 3 è Ôóññà äëÿ n = 4, èç êîòîðûõ âûâåäåíû ôîðìóëû äëÿ n = 6 è n = 8.Òåîðåìà 1. Ïóñòü v1 . . . vn - ëîìàíàÿ Ïîíñåëå α è β ñ íà÷àëîì X è êîíöîì Y , à çâåíüÿ
v1 è vn êàñàþòñÿ β â òî÷êàõ X ′ è Y ′ ñîîòâåòñòâåííî. Òîãäà äëÿ âñåõ òàêèõ ëîìàíûõ

XY
XX′+Y Y ′

- âåëè÷èíà ïîñòîÿííàÿ.Îáîçíà÷èì äàííóþ âåëè÷èíó ÷åðåç kn(α, β). Èç áîëüøîé òåîðåìû Ïîíñåëå [5] ñëåäóåò,÷òî âñå òàêèå ïðÿìûåXY êàñàþòñÿ îäíîé îêðóæíîñòè γn ñîîñíîé ñ α è β. Ðàäè÷ è Êàëèìàíóñòàíîâèëè, ÷òî k2(α, β) = 2Rr
R2−d2 . Îòñþäà ñëåäóþò èçâåñòíûå ôîðìóëû Ýéëåðà

1

R− d +
1

R + d
=

1

r
(n = 3)è Ôóññà

1

(R− d)2 +
1

(R + d)2
=

1

r2
(n = 4)Äàëåå ìû íàõîäèì îáùèé ïðèíöèï ïîëó÷åíèÿ ôîðìóë íà óñëîâèÿ çàìûêàíèÿ. Åñëèîêðóæíîñòè α, β è γ ïðèíàäëåæàò îäíîìó ïó÷êó, òî äëÿ ëþáîé òî÷êè îêðóæíîñòè αîòíîøåíèå åå ñòåïåíåé îòíîñèòåëüíî îêðóæíîñòåé γ è β ïîñòîÿíî. Îáîçíà÷èì ýòó âåëè÷èíó÷åðåç kα( γβ ). Ââåäåì îòîáðàæåíèÿ Gi : R

3 → R3, i > 2:
Gi(R, r, d) = (R,

√
R2 + k2i d

2 − ki(R2 − r2 + d2), kid),ãäå ki = kα(
γi
β
) è

Fn(R, r, d) = kn−1(α, β)− 1.Òîãäà Fn(R, r, d) = 0 çàäàåò óñëîâèå ñóùåñòâîâàíèÿ n-óãîëüíèêà Ïîíñåëå äëÿ îêðóæíîñòåé
α è β. 23



Òåîðåìà 2. Îêðóæíîñòè α è β îáëàäàþò n−ñâîéñòâîì Ïîíñåëå, ãäå n = n1 . . . nr,
ni ∈ N. Òîãäà Fn = Fnσ(1)

◦ Gnσ(2)
◦ . . . ◦ Gnσ(r)

, ãäå Gnσ(i)
= Gnσ(i)

(α, γti), ti = r∏
j=i+1

nσ(j),
i = 2, . . . , r − 1, tr= 1, σ ∈ Sr.Ñëåäóþùàÿ òåîðåìà óñòàíàâëèâàåò ñîîòíîøåíèå ìåæäó ôîðìóëàìè íà óñëîâèå çàìû-êàíèÿ äëÿ n è 2n.Òåîðåìà 3. Äëÿ ∀n > 3 èìååì F2n(R; r; d) = Fn

(
R; 2Rr

2(R2+d2)
(R2−d2)2 −R; 4R2r2d

(R2−d2)2

).Èç òåîðåìû 3 è ôîðìóë Ýéëåðà è Ôóññà ïîëó÷àåì ôîðìóëûäëÿ 6-óãîëüíèêà Ïîíñåëå:
1

(R2 − d2)2 − 4Rr2d
+

1

(R2 − d2)2 + 4Rr2d
=

1

2r2(R2 + d2)2 − (R2 − d2)2è äëÿ 8-óãîëüíèêà Ïîíñåëå:
1

((R2 − d2)2 − 4Rr2d)2
+

1

((R2 − d2)2 + 4Rr2d)2
=

1

(2r2(R2 + d2)2 − (R2 − d2)2)2Ìû òàêæå èññëåäóåì ñâÿçü äàííûõ ôîðìóë ñ èçâåñòíûìè ôîðìóëàìè Êýëè (ôîðìóëà-ìè, âûðàæàþùèìè óñëîâèÿ çàìûêàíèÿ ëîìàíîé Ïîíñåëå â òåðìèíàõ îïðåäåëèòåëåé ñïå-öèàëüíûõ ìàòðèö).[1] Radi�c M., Kaliman Z., About one relation concerning two circles,where one is inside of the other, Math. Maced. Vol 3, (2005), 45-50.[2] Ïðîòàñîâ Â.Þ., Îá îäíîì îáîáùåíèè òåîðåìû Ïîíñåëå, Óñïåõèìàò.íàóê, 61 (2006), 187-188.[3] Hrasc�o A., Poncelet-tipe problems, an elementary approach, Elem.Math., 55 (2000), 45-62.[4] Barth W., Bauer Th., Poncelet theorems, Expositiones Mathema-ticae, 14 (1996), 125-144.[5] Áåðæå Ì., Ãåîìåòðèÿ, Ì. Ìèð. 1984.
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A survey on spherical designs and Euclidean designsEtsuko BannaiKyushu University, Japan.etsuko@math.kyushu-u.ac.jpThe concept of Euclidean t-design was �rst de�ned by Neumaier-Seidel (1988), as a two-stepgeneralization of the concept of spherical t-design. Neumaier-Seidel and Delsarte-Seidel gavenatural lower bounds of the cardinalities of Euclidean t-designs for even integer t. However thenatural lower bounds of the cardinalities of Euclidean t- designs are already given by M�oller(1976) in more general context, i.e., in terms of cubature formula.In this talk we give the de�nition of the Euclidean t-designs. Then introduce some basicfacts on Euclidean t-designs. Give the de�nition of the tightness of Euclidean t-designs. Itis known that tight t-designs on p concentric spheres in Rn have the structures of coherentcon�gurations if p is not so large. In particular tight t-designs on two concentric spheres havethe structures of coherent con�gurations. We discuss the classi�cation problem of tight t-designson two concentric spheres in Rn using this property.This is joint work with Eiichi Bannai.
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Illuminating Ball-PolyhedraK�aroly BezdekUniversity of Calgary, Canadabezdek@math.ucalgary.caLet K be a convex body (i.e. a compact convex set with nonempty interior) in the d-dimensional Euclidean space Ed, d > 2. According to Boltyanski [2] the direction v ∈ Sd−1(i.e. the unit vector v of Ed) illuminates the boundary point b of K if the hal�ine emanatingfrom b having direction vector v intersects the interior of K, where Sd−1 ⊂ Ed denotes the
(d − 1)-dimensional unit sphere centered at the origin o of Ed. Furthermore, the directions
v1,v2, . . . ,vn illuminate K if each boundary point of K is illuminated by at least one ofthe directions v1,v2, . . . ,vn. Finally, the smallest n for which there exist n directions thatilluminate K is called the illumination number of K denoted by I(K). An equivalent butsomewhat di�erent looking concept of illumination was introduced by Hadwiger in [3]. There heproposed to use point sources instead of directions for the illumination of convex bodies. Basedon these circumstances the following conjecture, that was independently raised by Boltyanski[2] and Hadwiger [3] in 1960, is called the Boltyanski�Hadwiger Illumination Conjecture: Theillumination number I(K) of any convex body K in Ed, is at most 2d and I(K) = 2d if andonly if K is an a�ne d-cube.Let K be a convex body in Ed and let F be a face of K (i.e. let F be the intersection ofa supporting hyperplane of K with the boundary of K). Recall that the Gauss image ν(F ) ofthe face F is the set of all points (i.e. unit vectors) u ∈ Sd−1 ⊂ Ed with the property that thesupporting hyperplane of K with outer normal vector u contains F . It is easy to see that theGauss images of distinct faces of K have disjoint relative interiors in Sd−1 and ν(F ) is compactand spherically convex for any face F . (Recall that a set Y ⊂ Sd−1 is spherically convex if itis contained in an open hemisphere of Sd−1 and for every y1,y2 ∈ Y the shorter great-circulararc of Sd−1 connecting y1 with y2 is in Y .) Now, let Y ⊂ Sd−1 be a set of �nitely many points.Then the covering radius of Y is the smallest positive real number r with the property that thefamily of (d − 1)-dimensional closed spherical balls of (angular) radii r centered at the pointsof Y cover Sd−1. The following, rather basic principle, can be quite useful for estimating theillumination numbers of some convex bodies in particular, in low dimensions.Theorem 1. Let K ⊂ Ed, d > 3 be a convex body and let r be a positive real number with theproperty that the Gauss image ν(F ) of any face F of K can be covered by a (d−1)-dimensionalclosed spherical ball of (angular) radius r in Sd−1. Moreover, assume that there exist k pointsof Sd−1 with covering radius R satisfying the inequality r +R ≤ 90◦. Then I(K) ≤ k.In what follows, sets that we are going to study, will include intersections of �nitely manycongruent closed d-dimensional balls in Ed. In fact, one may assume that the congruent d-dimensional balls in question are of unit radius that is they are unit balls of Ed. Also, it isnatural to assume that removing any of the unit balls de�ning the intersection in questionyields the intersection of the remaining unit balls to become a larger set. The sets obtained inthis way are called ball-polyhedra. For a comprehensive list of properties of ball-polyhedra werefer the interested reader to the recent paper [1] of the author, L�angi, Nasz�odi and Papez.Theorem 1 implies the following statement.Corollary 1. Let B[X ] be a ball-polyhedron in E3, which is the intersection of the closed 3-dimensional unit balls centered at the points of X ⊂ E3.26



(i) If the Euclidean diameter diam(X) of X satis�es 0 < diam(X) ≤ 0.577, then I(B[X ]) = 4;(ii) If the Euclidean diameter diam(X) of X satis�es 0.577 < diam(X) ≤ 0.774, then
I(B[X ]) ≤ 5.In connection with this, it is natural to expect a stronger result to hold namely, that theillumination number of any ball-polyhedron in E3 is always less than 8 (in particular, maybe itis always at most 5).It is clear that estimates similar to Corollary 1 exist in higher dimensions. However, thefollowing approach based on the elegant paper [4] of Schramm is a more e�cient one inparticular, if the dimension is su�ciently large. More concretely, by taking a closer look ofthe proof in [4], and making the necessary modi�cations, it turnes out, that the main result ofSchramm [4] on estimating the illumination numbers of convex bodies of constant width can beimproved as well as extended to the following family of convex bodies that is much larger thanthe family of convex bodies of constant width and includes the family of �fat� ball-polyhedra.Thus, we have obtained the following new result.Theorem 2. Let X ⊂ Ed, d ≥ 3 be an arbitrary compact set with Euclidean diameter diam(X)
≤ 1 and let B[X ] be the intersection of the closed d-dimensional unit balls centered at the pointsof X. Then

I(B[X ]) < 4
(π
3

) 1
2
d

3
2 (3 + ln d)

(
3

2

) d
2

< 5d
3
2 (4 + ln d)

(
3

2

) d
2

.This proves the Illumination Conjecture for all �fat� ball-polyhedra of dimension at least
15.References[1] K. Bezdek, Zs. L�angi, M. Nasz�odi, and P. Papez, Ball-polyhedra, Discrete Comput. Geom.38/2 (2007), 201�230.[2] V. Boltyanski, The problem of illuminating the boundary of a convex body, Izv. Mold. Fil. ANSSSR 76 (1960), 77�84.[3] H. Hadwiger, Ungel�oste Probleme, Nr. 38, Elem. Math. 15 (1960), 130�131.[4] O. Schramm, Illuminating sets of constant width, Mathematika 35 (1988), 180�189.
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Î ôóíäàìåíòàëüíîì ìíîãîãðàííèêå äèñêðåòíîé ãðóïïûäâèæåíèé ãèïåðáîëè÷åñêîãî ïðîñòðàíñòâàÅâãåíèé ÁîéêîÈíñòèòóò ìàòåìàòèêè è èíôîðìàòèêè Àêàäåìèè íàóê Ðåñïóáëèêè Ìîëäîâà, Ìîëäîâà.gjenbonik@gmail.comÈâàí ÃóöóëÈíñòèòóò ìàòåìàòèêè è èíôîðìàòèêè Àêàäåìèè íàóê Ðåñïóáëèêè Ìîëäîâà, Ìîëäîâà.igutsul@mail.ruÂ ðàáîòå [1] ïîêàçàíî, ÷òî òðåõìåðíîå ãèïåðáîëè÷åñêîå ïðîñòðàíñòâî ðàçáèâàåòñÿ íîð-ìàëüíî è ïðàâèëüíî âûïóêëûìè ìíîãîãðàííèêàìè, äâóãðàííûå óãëû êîòîðûõ èìåþò äâàâèäà: ðàöèîíàëüíûìè îòíîñèòåëüíî π è èððàöèîíàëüíûìè îòíîñèòåëüíî π .Â äàííîé ðàáîòå ïîñòðîåí ôóíäàìåíòàëüíûé ìíîãîãðàííèê äëÿ äèñêðåòíîé ãðóïïûäâèæåíèé Λ3, âñå äâóãðàííûå óãëû êîòîðîãî èððàöèîíàëüíû îòíîñèòåëüíî π. Áîëåå òîãî,ìíîæåñòâî òàêèõ ìíîãîãðàííèêîâ îïðåäåëÿåòñÿ òðåìÿ íåïðåðûâíûìè ïàðàìåòðàìè.Ðàññìîòðèì â ãèïåðáîëè÷åñêîì ïðîñòðàíñòâå òðåóãîëüíóþ áèïèðàìèäó ñî âñåìè áåñ-êîíå÷íî óäàëåííûìè âåðøèíàìè. Îáîçíà÷èì åå âåðøèíû áóêâàìè A, B, C, D, E, ãäå äâó-ãðàííûå óãëû ïðè ðåáðàõ AB, BC è CA ðàâíû 2π/3, à îñòàëüíûå øåñòü äâóãðàííûõ óãëîâðàâíû π/3.Îòîæäåñòâèì ãðàíè ýòîãî ìíîãîãðàííèêà ïî ñëåäóþùåé ñõåìå:
(A,B,D)

ϕ1−→ (A,E,C);
(C,A,D)

ϕ2−→ (C,E,B);
(A,B,E)

ϕ3−→ (C,D,B).

Òîãäà ãðóïïà Γ, ïîðîæäåííàÿ äâèæåíèÿìè 〈ϕ1, ϕ2, ϕ3〉, áóäåò ãðóïïîé áåç êðó÷åíèé, àáèïèðàìèäà ABCDE áóäåò åå ôóíäàìåíòàëüíûì ìíîãîãðàííèêîì.Ðàññìîòðèì òåïåðü âíóòðè ïðàâèëüíîãî òåòðàýäðà ABCD òî÷êó F è ðàçîáüåì åãî íà÷åòûðå ñèìïëåêñà ñ òðåìÿ áåñêîíå÷íî óäàëåííûìè âåðøèíàìè è îäíîé ñîáñòâåííîé âåð-øèíîé FABC, FCAD, FCDB, FABC.Òåïåðü äâèæåíèåì ϕ1 "ïðèêëåèì" òåòðàýäð FABD ê ãðàíè (A,E,C) òåòðàýäðà EABCäâèæåíèåì ϕ2 "ïðèêëåèì" òåòðàýäð FCAD ê ãðàíè
(C,E,B) òåòðàýäðà EABC, è äâèæåíèåì ϕ−1

3 òåòðàýäð FCDB "ïðèêëåèì" ê ãðàíè
(A,B,E) òåòðàýäðà EABC, à òåòðàýäð FABC îñòàâèì íà ìåñòå.28



Â ðåçóëüòàòå òàêîé ïåðåêëåéêè ìû ïîëó÷èì ìíîãîãðàííèê ñ ÷åòûðüìÿ âåðøèíàìè íààáñîëþòå è ÷åòûðüìÿ ñîáñòâåííûìè âåðøèíàìè. Ìåòðèêà ýòîãî ìíîãîãðàííèêà çàâèñèòîò òðåõ íåïðåðûâíûõ ïàðàìåòðîâ (êîîðäèíàò òî÷êè F ).

Êðîìå òîãî, ëåãêî äîêàçàòü, ÷òî çà ñ÷åò âûáîðà òî÷êè F ýòîò ìíîãîãðàííèê ìîæíîñäåëàòü âûïóêëûì, à âñå äâóãðàííûå óãëû áóäóò èððàöèîíàëüíû îòíîñòåëüíî π. Ãðàíèýòîãî ìíîãîãðàííèêà ìîæíî îòîæäåñòâèòü äâèæåíèÿìè ϕ1, ϕ2, ϕ3, ϕ2ϕ
−1
1 , ϕ2ϕ3, ϕ1ϕ3.Îáîçíà÷èì âåðøèíû ïîëó÷åííîãî ìíîãîãðàííèêà öèôðàìè 1, 2, 3, 4, 5, 6, 7, 8. Òîãäà åãîãðàíè ìîæíî îòîæäåñòâèòü ïî ñõåìå:

(1, 2, 4)
ϕ1−→ (1, 5, 7) (1, 3, 4)

ϕ2−→ (5, 3, 8)

(5, 1, 6)
ϕ3−→ (2, 3, 4) (1, 3, 7)

ϕ2ϕ
−1
1−−−→ (5, 2, 8)

(1, 2, 6)
ϕ2ϕ3−−−→ (3, 2, 8) (5, 2, 6)

ϕ1ϕ3−−−→ (5, 3, 7)Ëåãêî äîêàçàòü, ÷òî ïîëó÷åííûé ìíîãîãðàííèê áóäåò ôóíäàìåíòàëüíûì ìíîãîãðàííè-êîì ãðóïïû Γ, à ïîòîìó ðàçáèâàåò Λ3 íîðìàëüíî è ïðàâèëüíî. Ñ òî÷êè çðåíèÿ ìåòðèêèìíîæåñòâî òàêèõ ìíîãîãðàííèêîâ íåïðåðûâíî è çàâèñèò îò òðåõ íåïðåðûâíûõ ïàðàìåòðîâ.[1]. Ìàêàðîâ.Â.Ñ. Î ôóíäàìåíòàëüíîì ìíîãîãðàííèêå äèñêðåòíîé ãðóïïû äâèæåíèéïðîòðàíñòâà Ëîáà÷åâñêîãî. Ãåîìåòðèÿ äèñêðåòíûõ ãðóïï ñèììåòðèè. Ìàòåìàòè÷åñêèå èñ-ñëåäîâàíèÿ. Âûï. 119. Êèøèíåâ, Øòèèíöà, 1990, ñ. 110-121.
29



M�obius geometry of the boundary at in�nity of complexhyperbolic spacesSergey Buyalo1Saint-Petersburg branch of the Steklov Mathematical Institute, Saint-Petersburg.sbuyalo@pdmi.ras.ru1. M�obius structures and Ptolemy spacesTwo metrics d, d′ on a set X are M�obius equivalent if for any quadruple Q = (x, y, z, u) ⊂ Xof pairwise distinct points the respective cross-ratio triples coincide, crtd(Q) = crtd′(Q), where
crtd(Q) = (d(x, y) · d(z, u) : d(x, z) · d(y, u) : d(x, u) · d(y, z)) ∈ RP 2.We consider extended metrics on X for which existence of an in�nitely remote point ω ∈ X isallowed, that is, d(x, ω) =∞ for all x ∈ X , x 6= ω. We always assume that such a point is uniqueif exists, and that d(ω, ω) = 0. We use notation Xω := X \ ω and the standard conventionsfor the calculation with ω =∞. If ∞ occurs in Q, say u = ∞, then crt(x, y, z,∞) = (d(x, y) :

d(x, z) : d(y, z)).A M�obius structure on a set X is a maximal collectionM =M(X) of metrics on X whichare pairwise M�obius equivalent. A topology on X is well de�ned by a M�obius structure. Whena M�obius structureM on X is �xed, we say that (X,M) or simply X is a M�obius space.A map f : X → X ′ between two M�obius spaces is called M�obius, if f is injective and for allquadruples Q ⊂ X of pairwise distinct points
crt(f(Q)) = crt(Q),where the cross-ratio triples are taken with respect to some (and hence any) metric of theM�obius structures of X , X ′. M�obius maps are continuous. If a M�obius map f : X → X ′ isbijective, then f−1 is M�obius, f is homeomorphism, and the M�obius spaces X , X ′ are said tobe M�obius equivalent.In general di�erent metrics in a M�obius structureM can look very di�erent. However if twometrics have the same in�nitely remote point, then they are homothetic.A classical example of a M�obius space is the extended R̂n = Rn∪∞ = Sn, n ≥ 1, where theM�obius structure is generated by some extended Euclidean metric on R̂n. Euclidean metricswhich are not homothetic to each other generate di�erent M�obius structures which however areM�obius equivalent.A M�obius space X is called a Ptolemy space, if it satis�es the Ptolemy property, that is,for all quadruples Q ⊂ X of pairwise distinct points the entries of the respective cross-ratiotriple crt(Q) ∈ RP 2 satis�es the triangle inequality. The importance of the Ptolemy propertycomes from the following fact: A M�obius structureM on a set X is Ptolemy if and only if forall z ∈ X there exists a metric dz ∈M with in�nitely remote point z.The classical example of Ptolemy space is R̂n with a standard M�obius structure.We list some known results on Ptolemy spaces. A real normed vector space, which isptolemaic, is an inner product space (Schoenberg, 1952); a Riemannian locally ptolemaic spaceis nonpositively curved (Kay, 1963); all Bourdon and Hamenst�adt metrics on ∂∞X, where Xis CAT(−1), generate a Ptolemy space (Foertsch-Schroeder, 2006); a geodesic metric space isCAT(0) if and only if it is ptolemaic and Busemann convex, a ptolemaic proper geodesic metric1This is a joint work with Viktor Shroeder 30



space is uniquely geodesic (Foertsch-Lytchak-Schroeder, 2007); any Hadamard space ptolemaic,a complete Riemannian manifold is ptolemaic if and only if it is a Hadamard manifold, anyFinsler ptolemaic manifold is Riemannian (Buckley-Falk-Wraith, 2009);A (Ptolemy) circle in a Ptolemy space X is a subset σ ⊂ X homeomorphic to S1 such thatfor every quaruple (x, y, z, u) ∈ σ of distinct points the equality
|xz||yu| = |xy||zu|+ |xu||yz| (1)holds, where it is supposed that the pair (x, z) separates the pair (y, u), i.e. y and u are indi�erent components of σ \ {x, z}. Recall the classical Ptolemy theorem that four points x, y,

z, u of the Euclidean plane lie on a circle (in this order) if and only if their distances satisfythe Ptolemy equality (1). Let σ be a circle passing through the in�nitely remote point ω andlet σω = σ \ ω. Then for x, y, z ∈ σω (in this order) we have |xy| + |yz| = |xz|, i.e. it impliesthat σω is a geodesic, actually a complete geodesic isometric to R.A M�obius characterization of the boundary at in�nity of real hyperbolic spaces ∂∞ Hn+1 isobtained by T. Foertsch and V. Schroeder, 2009.Theorem 1. Let X be a compact Ptolemy space such that through any three points there is acircle. Then X is M�obius equivalent to R̂n = ∂∞Hn+1.2. Ptolemy spaces with many circles and many automorphismsWe are interested in M�obius characterization of the boundary at in�nity of rank onesymmetric space di�erent from real hyperbolic spaces, for which the answer is given byTheorem 1. Such a boundary is a compact Ptolemy space with many circles and automorphisms,the property, which we formalize in the following four basic axioms. It is convenient to use terma R-circle for a Ptolemy circle.1. Existence axiom: through every two points in X there is a R-circle.2. Uniqueness axiom: given a quadruple of points Q ⊂ X such that the Ptolemy equality holdsfor Q, and three points of Q lie on a R-circle σ ⊂ X , then the fourth point of Q lies also on σ.3. Self-duality axiom: given a R-circle σ ⊂ X , let ψ : (X \ σ) × σ → σ be a map de�ned by
ψ(x, ω) ∈ σ is the closest to x point in the space Xω (by Axiom 2, ψ is well de�ned). Then
ψ(x, ψ(x, ω)) = ω for all x ∈ X \ σ, ω ∈ σ.4. Extension axiom: any M�obius map between any R-circles in X extends to a M�obiusautomorphism of X .Conjecture 2. Let X be a compact Ptolemy space which satis�es Axioms (1)�(4). Then X isM�obius equivalent to the boundary at in�nity of rank one symmetric space of noncompact type.As an important step towards Conjecture 2, we have the following conjecture. For ω ∈ X ,we consider Xω = X \ω as a metric space with a metric d from the M�obius structure of X within�nitely remote point ω.Conjecture 3. Let X be a compact Ptolemy space which satis�es Axiom 1�4. Then for every
ω ∈ X there is a submetry πω : Xω → Bω with the base Bω isometric to an Euclidean space
Rk, k ≤ dimX, such that any M�obius automorphism ϕ : X → X with ϕ(ω) = ω′ induces ahomothety ϕ : Bω → Bω′ with πω′ ◦ ϕ = ϕ ◦ πω. Completed �bers F̂ = F ∪ ω of πω, called
K-circles, are homeomorphic to the sphere Sp, k+p = dimX, and the following properties hold(1K) through any two distinct points in X there is a unique K-circle;(2K) any K-circle and any R-circle in X have at most two points in common;31



(3K) given a K-circle F̂ = F ∪ ω through ω ∈ X, and x ∈ X \ F̂ , there is a unique R-circle
σ ⊂ X through x, ω that intersects F ;(4K) given distinct K-circles F̂ = F ∪ω, F̂ ′ = F ′ ∪ω through ω ∈ X and two R-circles through
ω that intersect F , F ′, for any other K-circle F̂ ′′ = F ′′∪ω if F ′′ intersects one of the R-circles,then it necessarily intersects the other.This conjecture is much plausible, at the moment we are able to prove all properties (1K)�(4K) except the existence in (3K). Our main result is the following.Theorem 4. Let X be a compact Ptolemy space which satis�es Axioms (1)�(4). Assume inaddition that p = 1 in the conclusion of Conjecture 3, that is, X also has properties (1K)�(4K)with p = 1 and K = C. Then X is M�obius equivalent to the boundary at in�nity of a complexhyperbolic space.
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New tilings of hyperbolic spaces and new manifolds thatarise by a manifold reconstructionFlorin DamianState University of Moldova, Moldova.damian@usm.mdNew examples of tilings of hyperbolic spaces Hn (n = 3, 4, 5) and new manifolds thatarise by the reconstruction of hyperbolic n-manifolds are given. Geometrical and topologicalmethods are elaborated for the considered cases, with lead, in particular, to the constructionof half volume manifolds.In contrast with Euclidean spaces, the reconstruction of a tile-transitive face-to-face tilinginto one non-face-to-face tile-transitive that preserves the shape of the tile for hyperbolic spacesseems to be more di�cult. For example, tiling H3 by regular non-compact octahedra of �nitevolume admits only several discreet cases of such reconstructions. Below a method of tilingreconstruction is illustrated in more details for 3-dimensional case.Let consider only parabolic incidences of hyperfaces of the regular octahedron in Thurston'sexample (hyperbolic structure on the Whitehead links complement in S3). From fundamentalpolytope we obtain a manifold with two identical components as a total geodesical boundary,witch represents a sphere with 3 cusps. The symmetry group of these components has theorder 12 and, consequently, there are no more possibilities of gluing this component to obtaina manifold, but it should be veri�ed in each case. The geometry of cusps can be seen on theorthogonal orisphere. Finally, the gluing which does not preserve the map given by hyperfaceson boundary, yields non face-to-face incidences on the fundamental polytope. The fundamentalgroups of the new manifold generate a non-face-to-face (one-time tile-transitive) tiling of theconsidered hyperbolic space.In general, if the hyperbolic manifold is constructed by synthetic methods from fundamentalpolytopes with incidences of hyperfaces, for example from Coxeter polytopes, then we have thepossibility to study the total geodesic submanifolds along some hyperfaces, when they doesexist. The map of hyperfaces and the symmetry group of these submanifolds are essential inthis construction.In 4-dimensional case we use hyperbolic manifolds obtained from the non-compact regular24-cells [2, 3, 4]. Like in the case n = 3 we select hyperfaces with total geodisical submanifoldssituated along them. The reconstruction is done using these submanifolds. Two hyperbolic4-manifolds, with the cusps over the most symmetric 3-dimensional Euclidean torus, aredeterminedin in [4]. The new fundamental groups of reconstracted manifolds yield a non-face-to-face tiling of the 4-dimensional hyperbolic space.Using the geometry of �rst hyperbolic 5-manifolds [5] of �nite volume obtained from givenbelow fundamental polyhedron, non-face-to-faces tilings of H5 are obtained. The constructionof the fundamental polyhedron P 5 in H5 is important itself.Let U24 be a parabolic bundle in hyperbolic 5-dimensional space H5 which determines aregular 24-cell on the orthogonal to bundle orisphere Σ4. The second identic parabolic bundle
U ′
24 is taken along the axe of symmetry of U24 in the opposite direction to the �rst bundle.Let also U ′

24 be taken in the dual position to the U24. This is possible because the regular24-cells is a selfdual polytope. Each bundle, as a rigid solid, can be translated along the axeof symmetry, and we have one metric parameter that controls the dihedral angle of hyperfacesfrom di�erent bundles. This non-compact polyhedron P 5 of �nite volume, telling the hyperbolicspace H5, permits a very simple identi�cation of its 48 hyperfaces, which yields a 5-manifold.33



This manifold has the cusps over the most symmetric 4-dimensional Euclidean torus. Thestabilizer of any point of the torus is isomorphic to F4 - the symmetry group of the regular24-cells. Two-sided embedded total geodesic 4-submanifoldsM4
i (i=1,48) are found. It is justthe factorized symmetry hyperplanes of the polyhedron P 5. Di�erent metric reconstructions of

M5 alongM4 permit to obtain new 5-manifolds. The fundamental polyhedron is not Coxeterand the hyperfaces does not form a total geodesic submanifold, but some of the new manifoldsand their fundamental polyhedron permit a reconstruction in order to obtain non-face-to-facetiling of H5.All these examples are refereed to non compact polyhedrons and manifolds. For the compactcases we consider two consecutive reconstructions of the 4-dimensional Davis manifold whichyields an involution without �xed points on new manifold. The factorization of these manifoldsby the above involution gives the complete manifold whose volume is two times less thatthe volume of the initial manifold. In the communication we will give some other examplesof hyperbolic n-manifolds (n=3, 4, 5) Mn which possess such involution. Some of them areobtained as metrical reconstruction of manifolds described in [7-8].This topological and geometrical procedure is close related to well known topic of thecombinatorial theory of groups: HNN-extension and direct product with common subgroup.This work is partially supported by the grant 10.839.08.05 of HCSTD ASM.References:1. Thurston W.P., The geometry and topology of three-manifold. Mimeographed Lecture Notes.Princeton Univ. 1978/79 Ch. 1�9; 1980 Ch. 11, 13.2. Ratcli�e J.G., Foundations of Hyperbolic Manifolds. Grad. Texts in Math., 149, Springer-Verlag,1994.3. Gutsul I.S., Construction of a four-dimensional non-compact non-orientable hyperbolic manifoldof �nite volume. Scienti�c Conference of Lecturers of Moldavian State University, Natural Sciences,Abstracts, p. 9, Kishinev, 1995 (in Russian).4. Damian F., Symmetry and complete hyperbolic manifolds of �nite volume. Satellite conference ofECM'96, Symmetry and Antisymmetry in Mathematics, Formal Languages and Computer Science.Brasov, 1996, pp. 39�40.5. Damian F.L., Hyperbolic 5-manifolds with cusps over non-toric Euclidean spatial form. InternationalConference Dedicated to the 90th Anniversary of L.S.Pontryagin. Algebra, Geometry and Topology,Moscow, 1998, pp. 114�116 (in Russian).6. Ratcli�e J., Tschantz S., Integral congruence two hyperbolic 5-manifolds. Geometria Dedicata, 107,2004, pp. 187�209.7. Damian F.L. On isometry group of 4-dimensional hyperbolic space of 120-cells. Buletinul Acadwmieide Stiinte a Republicii Moldova. Matematica, 1993, no 2, p.87�91 (in Russian).8. Damian F.L., V.S.Makarov Star polytopes and hyperbolic three-manifolds. Buletinul Acadwmiei deStiinte a Republicii Moldova. Matematica, no. 2, 1998, pp. 102�108.
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Examples of neighborly polytopes of dimension D with
D + 4 verticesRostislav DevyatovMoscow State University, Moscow.deviatov@mccme.ruWe construct a series of neighborly polytopes using theory of Gale Diagrams.Let us choose an integer d ≥ 2. We are going to study polytopes with n = 2d + 4 verticeswhich are embedded in R2d.De�nition 1. [1] A polytope in RD is called neighborly if any subset of its vertices of cardinality

≤ bD/2c is a face.It is shown in [2] that given a polytope in R2d with 2d + 4 vertices, one can constructan (a�ne) Gale diagram, i. e. a set of black and white points (in this particular case) in
R2 that are in one-to-one correspondence with the vertices of the polytope. This diagramcompletely describes the combinatorics of the polytope. For example, to determine whether thevertices v1, . . . , vk of the polytope form a face consider the points pk+1 . . . , pn of the diagramcorresponding to the rest of the vertices. Let P be the convex hull of all black points among
pk+1, . . . , pn and let Q be the convex hull of all of the white ones. Then the vertices v1, . . . , vkform a face i� the intersection of the relative interiors of P and Q is not empty. A�ne Galediagram of a polytope is de�ned up to projective equivalence.We impose one more restriction on polytopes we are going to study: each of them shouldhave an a�ne Gale diagram with exactly d + 3 white points, and these points should form aconvex polygon.De�nition 2. A set S of 2d+ 4 black and white points in R2 is called a T-diagram if1. Exactly d+ 3 of the points in S are black and they form a convex polygon.2. S is an a�ne Gale diagram of a neighborly polytope.De�nition 3. A neighborly polytope is called T-polytope if it has an a�ne Gale diagram whichis T-diagram.Proposition 1. The following conditions are equivalent:1. S is a T-diagram.2. S is a set of d+3 black points and d+1 white points, black points form a convex polygonand there is exactly one white point inside each triangle with black vertices.Theorem 1. Two T-diagrams are combinatorially equivalent i� the corresponding T-polytopesare combinatorially equivalent.T-diagrams can be enumerated using 3-trees that are de�ned as follows:De�nition 4. A tree with the additional structure is called a 3-tree if1. Each of its vertices is of degree 1 or 3.2. (Additional structure) For each vertex A of degree 3, the edges incident to A are cyclicallyordered. These cyclic orderings induce cyclic order on the set of vertices of degree 1.35



Informally speaking, a 3-tree is a tree with vertices of degree 3 or 1 that is embedded in R2where an orientation is chosen.De�nition 5. A 3-tree is called the characteristic tree of a T-diagram if there exists a one-to-one correspondence ϕ between the points of the diagram and the vertices of the 3-tree suchthat1. The white points correspond to the vertices of degree 3, the black points correspond tothe vertices of degree 1.2. The cyclic order on the vertices of degree 1 corresponds to the natural cyclic order of thevertices of the (convex) (d + 3)-gon for some choice of orientation of the R2 containingthe diagram.3. A white point B is inside a triangle with three black vertices Ai, Aj, Ak i� any two of thethree paths connecting ϕ(B) with ϕ(Ai), ϕ(Aj), ϕ(Ak) have no common edges.Theorem 2. 1. Given a T-diagram, there exists a characteristic tree. It is unique up to thesimultaneous inverting of the cyclic orders at the vertices of degree 3.2. Given a 3-tree R with at least 8 vertices, there exists a unique (up to combinatorialequivalence) T-diagram with characteristic tree R.This enumeration theorem yields the following formula:Theorem 3. Given d, the number of T-polytopes in R2d is
Td+1

2(d+ 3)
+

3T(d+3)/2−1

4
+
T(d+3)/3−1

3
+
Td/2
2
,where

Tx =

{
0, x /∈ N

Cx
2x/(x+ 1), x ∈ N.We see that this number grows exponentially as d grows.Theorem 4. Given d and m, the number of faces of dimension m that contain a vertex A ofa T-polytope in R2d depends on d and m but does not depend on the polytope and the vertex A.AcknowledgementsThe author is grateful to the organizers of the Summer School on Contemporary Mathematics,Dubna, 2006, where a course on Gale Diagrams was given. The author is also grateful to GaianePanina who gave that course for a useful discussion.References[1] I. Shemer, Techniques for investigating neighborly polytopes, Convexity and graph theory, Ann.Diskr. Math. 20 (1984), 283�292.[2] G.M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics. Berlin: Springer-Verlag,1995. 36



On the Covering Theorem of BezicovichVladimir DolnikovYaroslavl State University, Yaroslavl.dolnikov@univ.uniyar.ac.ruThe aim of my talk is to tell about some new generalizations of the classical covering theoremof Besicovich.Theorem of Besicovich. If F = {C(x, rx)}x∈A is a family of cubes in Rn such that
supx∈A rx ≤ ∞, and A is a set in Rn, then there exists A0 ⊆ A such that following conditionshold:(1) A ⊆ ⋃

x∈A0
C(x, rx); (2) mult({C(x, rx)}x∈A0) ≤ a(n);(3)

{B(x, rx)}x∈A0 =

b(n)⋃

i=1

Fi,where Fi is a packing for any i; (4) a(n) and b(n) depends on n only.This theorem plays an important part in the theory of functions and the measure theory(see [5]).LetM be a �nite-dimensional space with a metric ρM of a lower bounded curvature µ > −∞in sense of Aleksandrov (FDSLC).De�nitions. A family of balls {B(x, rx)}x∈E in M is called a covering of Bezicovich of aset E ⊆ M . A family of disjoint sets is called a packing. Suppose F is a family of subsets of aset E, then by de�nition, put
mult(F) = sup

x∈E
mult(x,F) = sup

x
|{V ∈ F : x ∈ V }|.The value mult(x,F) is called a multiplicity of family F in the point x, and mult(F) is calleda multiplicity of family F .By Lnµ denote n-dimensional hyperbolic space, by En denote Euclidean space.Covering Theorem. If {B(x, rx)}x∈E is a covering of Bezicovich of a subset E in a complete

n-dimensional space of a lower bounded curvature µ > −∞ in sense of Aleksandrov M suchthat supx∈Erx <∞, then there exists E0 ⊆ E such that following conditions hold:1. E ⊆ ⋃
x∈E0

B(x, rx);2. mult({B(x, rx)}x∈E0) ≤ a(n, r, µ), where a(n, r, µ) depends on n, r, µ only;3.
{B(x, rx)}x∈E0 =

b(n,r,µ)⋃

i=1

Fi,where Fi is a packing for any i, and b(n, r, µ) depends on n, r, µ only.Remark 1. If we take a covering of Bezicovich {B(n, n)}n∈N in R, then we see that thecondition supx∈E rx <∞ is essentially.Remark 2. If µ ≥ 0, then a(n, r,M) and b(n, r,M) it possible to take independent of r. If
µ < 0, then we can not have do it.De�nition. A family F of compact convex sets in Rn is called absolute monotone if for any
V, W ∈ P there exists U such that W = V +U , (where V +U denote Minkowski sum) or and37



vice versa. Denote by V ≤ W , if W = V + U . If there exists V0 such that V + x ⊂ V0 for any
V ∈ F and some x ∈ Rn, then we say that a family F is bounded.It is clear that a monotone family F of parallelotopes and a family of homothets of a convexset is absolute monotone. Theorem. Suppose E is a bounded absolute monotone family ofcentrally symmetric convex compact sets in Rn with center in 0, A ⊂ Rn and F = {Bx +
x}x∈A,Bx∈E . Then there exists A0 ⊆ A such that following conditions hold:(1) A ⊆ ⋃

x∈A0
Bx + x; (2) mult({Bx + x}x∈A0) ≤ a(n);(3)

{Bx + x}x∈A0 =

b(n)⋃

i=1

Fi,where Fi is a packing for any i; (4) a(n) and b(n) depend on n only.References[1] Besicovich A.S., A general form of the covering principle and relative di�erentiation of additivefunctions Proc. Cambridge Philos. Soc. 41(1945), 103 �110, 42(1946), 1 �10.[2] Miguel de Guzm�an, Di�erentiation of integrals in Rn (Springer-Verlag, Berlin � Heidelberg � New-York) 1975.[3] Burago Yu., Gromov M., Perelman G., A.D.Alexandrov's spases with curvatures bounded frombelow, Uspehi Mat. Nauk, Vol 47, 2 (1992), 3 � 51.[4] Dol'nikov V.L., Certain covering theorem for Riemannian4 manifolds, Uspehi Mat. Nauk, 185(1975),205 � 206.
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Minkowski sums of Voronoi Polytopes and CommensurateDelone TilingsRobert ErdahlQueen's University, Canada.erdahl@mast.queensu.caIt is natural to ask whether the Voronoi polytope for a lattice can be written as theMinkowski sum of polytopes that are also Voronoi polytopes for lattices. S. S. Ryshkov answeredthis question by showing that the Voronoi polytope for a point in the relative interior of anL-type is a�nely equivalent to a weighted Minkowski sum of Voronoi polytopes for the edgeforms of the L-type.I will initiate proceedings by sketching the proof of the Lemma: A Voronoi polytope can bewritten as the Minkowski sum of Voronoi polytopes if and only if the Delone tilings for the twosummands are commensurate (a notion that will be de�ned during the lecture). This Lemmaserves as a corner stone for a beautiful duality theory that relates commensurate Delone tilingsand the Minkowski decomposition of Voronoi polytopes; it also provides the key step in provingRyshkov's Theorem. The line of argument I use will parallel that used in a preliminary versionof the duality theory relating dicings and Voronoi zonotopes.
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Delone Sets - Di�raction and the Cut-and-Project MethodDirk FrettloehBielefeld University, Germany.frettloe@math.uni-bielefeld.deA point set D in Rd is uniformly discrete, if there is r > 0 such that each ball of radius rcontains at most one point of D. D is called relatively dense, if each ball of radius R containsat least one point of D. Delone sets are point sets in Rd which are uniformly discrete andrelatively dense. They were introduced by B.N. Delone in order to study algebraic problems byusing geometric tools [2].If you do a google search (or a MathSciNet search) for "Delone set"today, almost all hits haveto do with mathematical quasicrystals. Mathematical quasicrystals are Delone sets in Rd whichare not periodic (i.e., they don't possess any translational symmetry), but show a high degree oflocal and global order. There is no generally agreed rigorous de�nition of "quasicrystal"today.However, any expert would agree that for instance the vertex set of the famous Penrose tilingform a mathematical quasicrystal.Real (physical) quasicrystals were found in the 1980s by their di�raction spectrum: Theyshow a pure point di�raction spectrum (like a crystal), but they show also 8-fold, 10-fold or 12-fold symmetry, which is impossible for crystals (i.e., structures with translationalsymmetry). This discovery induced a lot of experimental and theoretical research, leading tothe development of a mathematical theory of quasicrystals.Today the mathematics of Delone sets with a pure point di�raction spectrum is pretty wellunderstood. A central result is the following, obtained by Hof [4] for the Euclidean case andgeneralized by Schlottmann [6].Theorem 1 (Hof, Schlottmann). Each regular model set (or cut-and-project set) has pure pointdi�raction spectrum.A Delone set in Rd is a model set, if it can be obtained by a projection from some higherdimensional space in the following way:
Rd π1←− Rd ×H π2−→ H
∪ ∪ ∪
D Λ W

• H a locally compact Abelian group
• Λ a lattice in Rd ×H

• π1, π2 are projections, such that π1|Λis injective, and π2(Λ) is dense
• The windowW is compact (µ(W ) =
0)Then D = {π1(x) | x ∈ Λ, π2(x) ∈ W} is a (regular) model set.In turn, model sets have been studied already in the 70s by Meyer [5]. It was shown thateach model set is a Meyer set, and each Meyer set is a subset of a model set. A Meyer set is aDelone set D such that D −D is uniformly discrete.It is clear from the de�nitions that each lattice in Rd is a model set as well as a Meyer set.Thus both model sets and Meyer sets can be regarded as generalisations of lattices.Within this context, one can ask a lot of interesting questions. Here we focus on three ofthem.(a) Are there Meyer sets which are not pure point di�ractive?40



(b) Are there pure point di�ractive sets which are not model sets?(c) Has each model set an average lattice?The answers are (a) yes, for instance certain selfsimilar subsets of Zd [3]; (b) yes, the set ofvisible lattice points (which is not Delone) [1]; (c) yes in dimensions one and two, unknown ingeneral (work in progress, together with N. Dolbilin and A. Garber).References[1] M. Baake, R.V. Moody, P. Pleasants: Di�raction from visible lattice points and k-th power freeintegers, Discr. Math. 221 3-42[2] N.P. Dolbilin: The Delone Peak, preprint (2010)[3] D. Frettl�oh, B. Sing: Computing modular coincidences for substitution tilings and point sets,Discrete Comput. Geom. 37 (2007) 381-407[4] A. Hof: On di�raction by aperiodic structures, Commun. Math. Phys. 169 (1995) 25-43[5] Y. Meyer: Algebraic numbers and harmonic analysis, North-Holland Math. Lib. 2 North-Holland,Amsterdam (1972).[6] M. Schlottmann: Generalized model sets and dynamical systems, in: Directions in MathematicalQuasicrystals, M. Baake and R.V. Moody (eds.), CRM Monograph Series, vol. 13, AMS,Providence, RI (2000) pp. 143�159.[7] D. Shechtman, I. Blech, D. Gratias, W. Cahn: Metallic phase with long-range orientational orderand no translational symmetry, Phys. Rev. Lett. 53 (1984) 1951-1953
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Combinatorial diameter of parallelohedra1Alexey GarberMoscow State University, Moscow.alexeygarber@gmail.comOne of the most important and well known conjectures in the modern theory ofparallelohedra is the Voronoi conjecture.The Voronoi Conjecture. Every parallelohedron in Rd is a�nely equivalent to a Dirichlet-Voronoi domain of some d-dimensional lattice. The Voronoi conjecture was proved for someparticular families of parallelohedra by Voronoi, Zhitomirski and Ordin.In all of the mentioned results proof of the Voronoi conjecture uses the methods of canonicalscaling and positive quadratic forms. The canonical scaling is a rule which we use to associatea real number to any (d−1)-face of a polytope to satisfy some relation on this numbers for anyneighborhood of (d− 2)-dimensional face of tiling of space Rd.In this talk we will discuss a way how to �nd a value of canonical scaling for arbitraryparallelohedron in the shortest possible way. We will try to �nd the combinatorial diameter ofthe parallelohedron, i.e. the diameter of the Venkov graph of the parallelohedron. Venkov graphof the parallelohedron P is the graph whose vertices are pairs of opposite facets P and twopairs are connected with an edge if and only if some facets from these pairs have a common
(d− 2)-face.We will prove the followingTheorem. If parallelohedron P is d-dimensional zonotope, i.e. P is a d-dimensionalMinkowski sum of line segments, then the combinatorial diameter of P is not greater than
dlog2 de.

1This work is supported by RFBR grant 08-01-00565-a and by grant �Scienti�c Schools� ÍØ-5413.2010.1.42



Î ïðîáëåìå Âîðîíîãî äëÿ ïàðàëëåëîýäðîâÀíäðåé ÃàâðèëþêÌîñêîâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èìåíè Ì.Â.Ëîìîíîñîâà, Ìîñêâà.ghavr777@mail.ruÏîíÿòèå ïàðàëëåëîýäðà è ñàì òåðìèí áûëè ââåäåíû êðèñòàëëîãðàôîì Å.Ñ. Ô¸äîðî-âûì [1] (1885) êàê îäíî èç îñíîâíûõ ïîíÿòèé êðèñòàëëîãðàôèè. Ïàðàëëåëîýäð d èçìåðåíèéîïðåäåëÿåòñÿ êàê âûïóêëûé ýâêëèäîâ ìíîãîãðàííèê, êîòîðûé ñâîèìè ïàðàëëåëüíûìè êî-ïèÿìè ðàçáèâàåò ïðîñòðàíñòâî Ed íîðìàëüíûì îáðàçîì, òî åñòü åñëè ïåðåñå÷åíèå äâóõìíîãîãðàííèêîâ íå ïóñòî, òî îíî åñòü èõ îáùàÿ öåëàÿ ãðàíü íåêîòîðîé ðàçìåðíîñòè.Îäíà èç îñíîâíûõ çàäà÷ òåîðèè ïàðàëëåëîýäðîâ � íàõîæäåíèå àëãîðèòìà, ïå-ðå÷èñëÿþùåãî äëÿ äàííîé ðàçìåðíîñòè âñå êîìáèíàòîðíûå òèïû ïàðàëëåëîýäðîâ �äî ñèõ ïîð îñòà¸òñÿ íåðåø¸ííîé. Ã.Õ. Âîðîíîé [6] ïîñòðîèë òåîðèþ ïàðàëëåëîýäðîâÄèðèõëå-Âîðîíîãî, â êîòîðîé ïðèâåä¸í àëãîðèòì ïåðå÷èñëåíèÿ âñåõ êîìáèíàòîðíûõ òè-ïîâ ïàðàëëåëîýäðîâ Âîðîíîãî. Îí âûñêàçàë ãèïîòåçó î òîì, ÷òî ëþáîé ïàðàëëåëîýäðàôôèííî-ýêâèâàëåíòåí íåêîòîðîìó ïàðàëëåëîýäðó Äèðèõëå-Âîðîíîãî. Ïîä ïàðàëëåëîýä-ðîì Äèðèõëå-Âîðîíîãî ìû ïîíèìàåì îáëàñòü â Ed, ïîñòðîåííóþ ïî íåêîòîðîé d-ìåðíîéðåø¸òêå Λ ⊂ Ed è ñîñòîÿùóþ èç òî÷åê, äëÿ êîòîðûõ äàííàÿ òî÷êà p ∈ Λ ÿâëÿåòñÿ áëèæàé-øåé ñðåäè âñåõ òî÷åê ðåø¸òêè. Íåòðóäíî ïîêàçàòü, ÷òî òàêàÿ îáëàñòü ÿâëÿåòñÿ d-ìåðíûììíîãîãðàííèêîì â Ed è äåéñòâèòåëüíî ÿâëÿåòñÿ ïàðàëëåëîýäðîì.Âîðîíîé äîêàçàë ñâîþ ãèïîòåçó äëÿ, òàê íàçûâàåìûõ, ïðèìèòèâíûõ ïàðàëëåëîýäðîâ.Ïîçäíåå Î.Ê. Æèòîìèðñêèé [7] óñèëèë òåîðåìó Âîðîíîãî, äîêàçàâ ãèïîòåçó äëÿ î÷åíü øè-ðîêîãî êëàññà � äëÿ ïðèìèòèâíûõ â (d−2)-ìåðíûõ ãðàíÿõ (ýòî îãðàíè÷åíèå ýêâèâàëåíòíîòîìó, ÷òî â êàæäîé (d − 2)-ìåðíîé ãðàíè ñõîäÿòñÿ ðîâíî 3 ïàðàëëåëîýäðà). R. Erdahl [8]äîêàçàë ãèïîòåçó Âîðîíîãî äëÿ ïàðàëëåëîýäðîâ, êîòîðûå ÿâëÿþòñÿ çîíîýäðàìè. Ïîñëåä-íèå ðåçóëüòàòû áûëè ïîëó÷åíû À. Îðäèíûì [9] äëÿ, òàê íàçûâàåìûõ, 3-íåðàçëîæèìûõ(3-irreducible) ïàðàëëåëîýäðîâ.Â äîêàçàòåëüñòâàõ òåîðåì Âîðîíîãî, Æèòîìèðñêîãî, Îðäèíà ïðîèñõîäèò ïîñòðîåíèåòàê íàçûâàåìîé êàíîíè÷åñêîé íîðìèðîâêè:Ïóñòü T � ðàçáèåíèå ïðîñòðàíñòâà Ed íà ïàðàëëåëüíûå êîïèè äàííîãî ïàðàëëåëîýäðà
P0. Îáîçíà÷èì ÷åðåç F i ìíîæåñòâî âñåõ i-ìåðíûõ ãðàíåé ýòîãî ðàçáèåíèÿ.Îïðåäåëåíèå. Ïóñòü Sn−1 � ïðîèçâîëüíîå ìíîæåñòâî ãèïåðãðàíåé: Sn−1 ⊆ Fn−1 ðàç-áèåíèÿ T . Êàíîíè÷åñêîé íîðìèðîâêîé Sn−1 íàçûâàåòñÿ òàêàÿ ôóíêöèÿ s : Sn−1 → R+,÷òî1. Åñëè F1, F2, F3 ∈ Sn−1 � ãèïåðãðàíè, ñõîäÿùèåñÿ â ïðèìèòèâíîé (d−2)-ãðàíè, òîãäàäëÿ íåêîòîðîãî (òàê íàçûâàåìîãî ñîãëàñîâàííîãî) âûáîðà íàïðàâëåíèé åäèíè÷íûõíîðìàëåé ni ê ýòèì ãðàíÿì s(F1)n1 + s(F2)n2 + s(F3)n3 = 02. Åñëè F1, F2, F3, F4 ∈ Sn−1 � ãèïåðãðàíè, ñõîäÿùèåñÿ â íåïðèìèòèâíîé (d− 2)-ãðàíè,òîãäà äëÿ íåêîòîðîãî (òàê íàçûâàåìîãî ñîãëàñîâàííîãî) âûáîðà åäèíè÷íûõ íîðìàëåé

ni ê ýòèì ãðàíÿì s(F1)n1 + s(F2)n2 + s(F3)n3 + s(F3)n4 = 0Êëþ÷åâûì ìîìåíòîì äîêàçàòåëüñòâ ïåðå÷èñëåííûõ âûøå òåîðåì ÿâëÿåòñÿ ïîñòðîåíèå îñî-áîé ïîëèýäðàëüíîé ïîâåðõíîñòè. Îíà ñòðîèòñÿ êàê ãðàôèê êóñî÷íî-ëèíåéíîé ôóíêöèè
G : Ed → R, òàê íàçûâàåìîé æåíåðàòðèñû Âîðîíîãî, êîòîðàÿ ñòðîãî ëèíåéíà íà êàæäîìïàðàëëåëîýäðå ðàçáèåíèÿ T . Ñ ïîìîùüþ êàíîíè÷åñêîé íîðìèðîâêè îïðåäåëÿþòñÿ ïðèðà-ùåíèÿ ãðàäèåíòîâ íà ñìåæíûõ ãðàíÿõ äàííîé ïîëèýäðàëüíîé ïîâåðõíîñòè.43



Â ñëó÷àÿõ Âîðîíîãî, Æèòîìèðñêîãî, Îðäèíà (êàæäûé ïîñëåäóþùèé îõâàòûâàåò ñòðîãîáîëåå øèðîêèé êëàññ ïàðàëëåëîýäðîâ) ïî ïîñòðîåííîé æåíåðàòðèñå îïðåäåëÿåòñÿ åäèí-ñòâåííûì îáðàçîì âïèñàííûé â å¸ ãðàôèê ýëëèïòè÷åñêèé ïàðàáîëîèä. Ýòîò ïàðàáîëîèäàôôèííûì ïðåîáðàçîâàíèåì ìîæíî ïåðåâåñòè â ïàðàáîëîèä ñôåðè÷åñêèé. Ñ ïîìîùüþ îï-òè÷åñêèõ ñâîéñòâ ñôåðè÷åñêîãî ïàðàáîëîèäà ïîêàçûâàåòñÿ, ÷òî ïîëó÷åííîå èç ðàçáèåíèÿ
T ïðè äàííîì àôôèííîì ïðåîáðàçîâàíèè ðàçáèåíèå T ′ ÿâëÿåòñÿ ðàçáèåíèåì íà ïàðàëëå-ëîýäðû Äèðèõëå-Âîðîíîãî, è ãèïîòåçà â ñîîòâåñòâóþùèõ ñëó÷àÿõ âåðíà.Àâòîðîì äîêàçàíà òåîðåìà, óòâåðæäàþùàÿ, ÷òî óêàçàííîå ïîñòðîåíèå ôóíêöèè æåíåðà-òðèñû è ñîîòâåòñòâóþùåé ïîëèýäðàëüíîé ïîâåðõíîñòè âîçìîæíî äëÿ ëþáîé êàíîíè÷åñêîéíîðìèðîâêè (à íå òîëüêî â ñëó÷àÿõ Âîðîíîãî, Æèòîìèðñêîãî, Îðäèíà). Â òî æå âðåìÿïðèâåä¸í ïðèìåð êàíîíè÷åñêîé íîðìèðîâêè (è ñîîòâåòñòâóþùåé ïîâåðõíîñòè), íå îïèñàí-íîé âîçëå êàêîãî-ëèáî ýëëèïòè÷åñêîãî ïàðàáîëîèäà. Èç ýòèõ òåîðåìû è ïðèìåðà ñëåäóåò,÷òî ñóùåñòâîâàíèÿ êàíîíè÷åñêîé íîðìèðîâêè äëÿ íåêîòîðîãî ïàðàëëåëîýäðà ìîæåò áûòüíåäîñòàòî÷íî äëÿ äîêàçàòåëüñòâà ãèïîòåçû Âîðîíîãî (êàê áûëî âî âñåõ ïðèâåä¸ííûõ âûøåñëó÷àÿõ).References[1] Ô¸äîðîâ Å.Ñ., Íà÷àëà ó÷åíèÿ î ôèãóðàõ. Ñàíêò-Ïåòåðáóðã, 1885[2] Minkowski H., Allgemeine Leherz�atze �uber konvexe Polyeder. Nach. Ges. Wiss. G�ottingen 1897,198-219[3] Âåíêîâ Á.À., Îá îäíîì êëàññå ýâêëèäîâûõ ìíîãîãðàííèêîâ. Âåñòíèê Ëåíèíãðàäñêîãî Óíèâåð-ñèòåòà, ñåð. ìàò., ôèç., õèì., 1954. Òîì 9, 11-31[4] Dolbilin N.P., The extension theorem. Discrete mathematics, (2000), T. 221, No 1-3, 43-60[5] Äîëáèëèí Í.Ï., Ñâîéñòâà ãðàíåé ïàðàëëåëîýäðîâ. Òðóäû ÌÈÀÍ (2009), 266, 112-126.[6] Voronoi G., Nouvelles applications des param�etres continus �a la theorie des formes quadratiques,II M�emoire: Recherches sur les parall�elo�edres primitifss. Crelle Journ., 134, 1909; Ñîáðàíèå ñî÷è-íåíèé, ò. II (1952)[7] Zhitomirskii O.K., Versch�arfung eines Satzes von Woronoi. Leningr. �z.-math. Obshch. 2(1929),131-151.[8] Erdahl R., Zonotopes, Dicings, and Voronoi's Conjecture on Parallelohedra. Eur. J. Comb., 20(6):527-549 (1999)[9] Ordine A., Proof of the Voronoi conjecture on parallelotopes in a new special case. Queen'sUniversity, Kingston (2005)[10] Delaunay B.N., Sur l�a partition reguli�ere de l'espace a 4 dimension. Èçâ. ÀÍ ÑÑÑÐ, (1929) No1, 79-110, No 2, 147-164.[11] Àëåêñàíäðîâ À.Ä., Î çàïîëíåíèè ïðîñòðàíñòâà ìíîãîãðàííèêàìè. Âåñòíèê ËåíèíãðàäñêîãîÓíèâåðñèòåòà, ñåð. ìàò., ôèç., õèì., 1954. Òîì 2, 33-43
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Approximation of convex sets by projections of convexpolyhedraElena GorskayaMoscow State University, Moscow.allena@mccme.ruThe problem of approximation of convex sets by polyhedra with a given precision ε is applied,in particular, for convex programming problems (CP) of the form: f0(x) → min, fi(x) 6 0,
i = 1, . . . , m, x ∈ Rn (fi are convex functions), i.e., �nding minima of a convex function f0on a convex domain G, given by a system of convex constraints. It is generally known thatfor large dimensions n such problems may have enormous compexity. The only exceptions arelinear programming (LP) problems (f0 and fi are all linear), which are e�ciently solvable evenfor n > 106 [1]. Thus, if one approximates the graph of f0 and the domain G by polyhedrawith the precision ε, then the CP problem is approximately reduced to the corresponding LPproblem, which can then be e�ciently solved.The problem of approximation of convex sets by polyhedra in the Hausdor� metric hasbeen thoroughly studied in the literature, see [2] and references therein. It is known that thenumber of hyperfaces (i.e., linear constraints) of the aproximating polyhedron is bounded aboveby Cε 1−n

2 , where n is the dimension, and this estimate is sharp even for the Euclidean ball.We analyze a new approach that reduces esseintially the number of faces for some classes ofconvex domains. This approach is based on the following simple fact: an orthogonal projectionof a convex polyhedron can have much more faces than the original polyhedron. Therefore,this is reasonable to approximate convex sets not be polyhedra in the original space, but byprojections of polyhedra in a larger space.The idea of applying projections from larger dimensions was �rst proposed by A. Ben-Taaland A. Nemirovsky for approximation of quadrics in the Hausdor� metric [3]. We extend thisapproach to a wider class of convex sets. The dimensions of the approximating polyhedra areof order C (
ln 1

ε

)k, and the number of faces is usually the double of this number.For generalizing this method to a wider class of convex functions we introduce anotherapproach. The idea is to approximate �rst graphs of univariate convex functions, by polygons,and then, using a special inductive procedure, reduce the multivariate problem to the univariateone. The corresponding polyhedron of a larger dimension is constructed in the inductiveprocedure. The complexity of the algorithm increases to a polynomial one, since the numberof sides of the approximating polygons is estimated as C 1√
ε
. However, this enlarges the class ofapproximated functions and sets. We present an optimal (by the number of sides Nε) algorithmfor univariate approximation by polygons, and elaborate a special inductive procedure to passto multivariate case. This allows us to approximate, for instance, the unit balls of the Lp-norm,the graph of the enthropy function, etc.This approach of approximation by projections makes it possible, in particular, to solveCP problems with the functions of those special classes, reducing them to LP problems. Thee�ciency of this method is illustrated with several examples.References[1] S. Boyd, L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, 2006.[2] M. Lopez, S. Reisner. Hausdor� approximation of convex polygons. Comput. Geom. 32(2005), no. 2, 139�158.[3] A. Ben-Tal, A. Nemirovski. On polyhedral approximations of the second order cone.Math.Oper. Res. 2001, 26. 193�205. 45



The Delaunay tiling and the conjecture of VoronoiVyacheslav GrishukhinCentral Economics and Mathematics Institute RAS, Moscow.grishuhn@cemi.rssi.ruA parallelotope is a polytope translation copies of which �ll the space without gaps andintersections by inner points. A special case of a parallelotope is the Voronoi polytope of a pointlattice. It is the closure of all points of space that are nearer to a given point of the lattice thanto other points of it.The famous conjecture of Voronoi asserts an a�ne equivalence of a parallelotope to a Voronoipolytope. This conjectutre is equivalent to an existence of a dual tiling for the tiling ontoparallelotopes.According to general theory of tilings onto n-dimensional polytopes, two tilings are dualif there is a one-to-one correspondence between k-faces of one tiling and (n − k)-faces of theother one, such that the a�ne spaces of corresponding faces are orthogonal. It is proved in thegeneral theory of tilings that a primitive tiling and a tiling onto zonotopes have dual tilings(see, for example, [1]). In the �rst case, the dual tiling consists of simplices. In the second one,the dual tiling is formed by an arrangement of hyperplanes that are orthogonal to edges of thezonotopes. This implies that the Voronoi conjecture is true when parallelotopes are primitiveor are zonotopes.Voronoi calls a parallelotope canonically de�ned if it is a�nely equivalent to a Voronoipolytope. A tiling onto canonically de�ned parallelotopes has two types of dual tilings: theabove de�ned dual tiling and a topolgically dual tiling. In topologically dual tilings, spacesof corresponding faces need not to be orthogonal. It is shown in this talk that a tiling ontoparallelotopes has a topologically dual tiling onto Delaunay polytopes.It is well known, that if parallelotopes of a tiling are Voronoi polytopes, then the bothmutually dual tilings exist and coincide. Polytopes of the dual tiling are called Delaunaypolytopes. A Delaunay polytope corresponds to a vertex v of the tiling onto Voronoi polytopes.It is the convex hull of the centers of all Voronoi polytopes having v as a vertex.It is naturally to de�ne similarly Delaunay polytopes of the tiling onto parallelotope. �AkosHorv�ath proved in [2] that the centers of all parallelotopes having a common vertex are verticesof the corresponding Delaunay polytope. But he did not prove that the such de�ned Delaunaypolytope is full dimensional. In this talk, this gap is �lled.An n-dimensional parallelotope P = P (0) with its center in origin can be described asfollows.
P = {x ∈ Rn : −1

2
pTi ti ≤ pTi x ≤

1

2
pTi ti, i ∈ IP}.Here IP is the set of indices of pairs of opposite facets. The vector ti connects the center of P (0)with the center of the parallelotope P (ti) that is adjacent to P (0) by a facet Fi. The vector piis the facet vector of Fi.The edges of the above de�ned Delaunay polytopes are parallel and equal by norm to vectors

ti. If a parallelotope is de�ned canonically then there is a linear map x→ Qx such that pi = Qtifor all i ∈ IP . In this case, the facet vectors pi are called canonically de�ned.The map Q transforms each Delaunay polytope PD into canonically de�ned Delaunaypolytope QPD. The edges of canonically de�ned Delaunay polytopes are parallel and equalby norm to canonically de�ned facet vectors pi. The canonically de�ned Delaunay polytopesform the dual tiling for the tiling onto canonically de�ned parallelotopes.46



I show how simple can be transformed a simplicial Delaunay polytope into canonicallyde�ned simplex.References[1] F.Aurenhammer, "A criterion for the a�ne equivalence of cell complexes in R
d and convexpolyhedra in R

d+1 Discrete Comput. Geom. 2 (1987) 49�64.[2] �A.G.Horv�ath, "On the boundary of an extremal bodyBeitr�age zur Algebra und Geometry 40:2(1999) 331�342.
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The cut loci and the conjugate loci on n dimensionalellipsoids1Jin-ichi ItohKumamoto University, Japan.j-itoh@kumamoto-u.ac.jpThe notion of cut locus, introduced by H. Poincar�e in 1905, gain an important place inglobal riemannian geometry. The cut locus C(x) of the point x in the riemannian manifold Mis the set of all extremities (di�erent from x) of maximal (with respect to inclusion) shortestpaths starting at x.The study of cut locus has long history, there are many remarkable results. S. B. Myersfor n = 2, and M. Buchner for general n, established that the cut locus of a real analyticriemannian manifold of dimension n is homeomorphic to a �nite (n− 1)-dimensional simplicialcomplex.But in most cases, to determine cut loci are quite di�cult problems. There are only afew cases where the cut loci are well understood; for example, symmetric spaces and somehomogeneous spaces (T.Sakai and M.Takeuchi), certain surfaces of revolution (M.Tanaka ansR.Sinclair), the tri-axial ellipsoids and some Liouville surfaces (K.Kiyohara and I.) Especiallyin higher dimensional case there are not any results without symmtric spaces and some singularspaces (Vilcu and I. ), even if quadric hypersurfaces.In this talk, we determine the cut locus and the conjugate locus of the ellipsoid M :∑n
i=0 u

2
i /ai = 1 (0 < an < · · · < a0), Let Jk be the submanifolds of M de�ned by

Jk = {u ∈M | uk = 0,
∑

i 6=k

u2i
ai − ak

= 1 } (1 6 k 6 n− 1)Let (λ01, . . . , λ0n) be the elliptic coordinates of p.Theorem 1. If p 6∈ Jn−1, then C(p) is an (n − 1)-dimensional closed disk which is containedin a submanifold (possibly with boundary) de�ned by λn = λ0n.If p ∈ Jn−1, then C(p) is an (n−2)-dimensional closed disk contained in Jn−1. It is identicalwith the cut locus of p in the (n− 1)-dimensional ellipsoid Nn−1.LetKi be the i-th conjugate locus. For the singularities ofKi, we have the following theorem.Theorem 2. Let p be a point with ui 6= 0 (∀i). Then the set of singularities of the �rst conjugatelocus K1 of p consisits of three connected components; one of them are di�eomorphic to Sn−2×a cusp curve, and the interior of the other two are di�eomorphic to (immersed) Dn−2× a cuspcurve.Here, Dn−2 denotes the (n− 2)-open disk. The boundary of the latter components are stillunclear up to now. This theorem is a higher dimensional version of the so-called Jacobi's lastgeometric statement: The �rst conjugate locus of a general point on a two-dimensional ellipsoidcontains exactly four cusps.Moreover, we have the following theorem, if the ellipsoid M is enough close to the roundsphere.1This is a joint work with K. Kiyohara, Okayama Univ.48



Theorem 3. The set of singularities of Ki (2 ≤ i ≤ n−2) consists of two conected componentswhose interiors are di�eomorphic to
Sn−1−i ×Di−1 × a cusp curve , Dn−1−i × Si−1 × a cusp curverespectively. Kn−1 is similar to K1. The intersection Ki ∩ Ki+1 is identical to the commonboundary of their singularity sets; Sn−2−i × Si−1.References[1] J. Itoh, K.Kiyohara, The cut loci and the conjugate loci on ellipsoids, ManuscriptaMath., 114 (2004), 247�264.[2] J. Itoh, K.Kiyohara, The cut loci on ellipsoids and certain Liouville manifolds,Asian J. Math. to appear.[3] J. Itoh, K.Kiyohara, The conjugate loci on ellipsoids and certain Liouvillemanifolds, in preparation.[4] K.Kiyohara, Two classes of Riemannian manifolds whose geodesic �ows areintegrable, Mem.Amer.Math. Soc., 130/619 (1997).[5] R. Sinclair, On the last geometric statement of Jacobi, Experiment.Math. 12(2003), 477�485.
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Random Sequential Packing of Cubes1.Yoshiaki ItohInstitute of Statistical Mathematics, Japan.itoh@ism.ac.jpBecause of analytical di�culties for higher dimension, one-dimensional random sequentialpacking has received attention ( Renyi (1958)), Itoh (1980)). The one-dimensional model can beextended to the random sequential packing of cubes. Consider the random sequential packingof cubes of edge length 1 in a parallel position in a larger cube of edge length x. It seems to benatural to expect for the d-dimensional extension that the limiting packing density (i) existsand (ii) is equal to βd as x tends to ∞, where β is the limiting packing density for d = 1 givenby Renyi (1958), which is called Palasti' s conjecture. The conjecture (i) is shown by Penrose(2001). It is known that the computer simulations do not support the conjecture (ii).Consider the simplest random sequential packing with rigid boundary, i.e. a packing inwhich cubes of edge length 2 are put sequentially at random into the cube of edge length 4,with a cubic grid with unit edge length, in a parallel position on the grid . Consider the packingdensity γd of dimension d. The computer simulations up to dimension 11 (Itoh and Ueda (1983),Itoh and solomon (1986)) seems to �t to γd = d−α with an appropriate constant α.The expected number of decrease of the packing density is shown to be less than (4
3
)d ateach step of the random sequential packing (Poyarkov (2004, 2007) , which proves that theexpected number of cubes at the saturation is larger than (3

2
)d.Consider the simple random sequential packing with periodic boundary (random sequentialpacking into torus). The case d = 1, 2 gives the tiling of cubes (100 per cent packing density),while the case 3 6 d does not always give the tiling of cubes. We study geometrical structuregenerated by of packing of cubes (Dutour Sikiric, Itoh and Poyarkov (2007)).Such a cube packing is called non-extendible if we cannot insert a cube in the complementof the packing. In dimension 3, there is a unique non-extendible cube packing with 4 cubes. Weprove that d-dimensional cube packings with more than 2d − 3 cubes can be extended to cubetilings. We also give a lower bound on the number N of cubes of non-extendible cube packings.Given such a cube packing and z ∈ Zd, we denote by Nz the number of cubes inside the

4-cube z + [0, 4[d and call second moment the average of N2
z . We prove that the regular tilingby cubes has maximal second moment and give a lower bound on the second moment of a cubepacking in terms of its density and dimension.We consider sequential random packing of cubes z + [0, 1]n with z ∈ 1

N
Zn into the cube

[0, 2]n and the torus Rn/2Zn as N →∞. In the cube case [0, 2]n as N →∞ the random cubepackings thus obtained are reduced to a single cube with probability 1 − O
(

1
N

). In the toruscase the situation is di�erent: for n 6 2, sequential random cube packing yields cube tilings,but for n > 3 with strictly positive probability, one obtains non-extensible cube packings.So, we introduce the notion of combinatorial cube packing, which instead of depending on
N depend on some parameters (Dutour Sikiric and Itoh (2010)). We use use them to derive anexpansion of the packing density in powers of 1

N
. The explicit computation is done in the cubecase. In the torus case, the situation is more complicate and we restrict ourselves to the case

N →∞ of strictly positive probability.ReferencesDutour Sikiric, M., Itoh, Y., and Poyarkov, A. (2007) Cube packings, second moment and holes,European Journal of Combinatorics, 28, 715-725.1This is a joint work with Mathieu Dutour Sikiric from Institut Rudjer Boscovic, Zagreb50



Dutour Sikiric, M. Itoh, Y. (2010) Combinatorial cube packings in the cube and the torus, EuropeanJournal of Combinatorics, 31, 517-534.Itoh Y. (1980) On the Minimum of Gaps Generated by One-Dimensional Random Packing, Journal ofApplied Probability, Vol.17, 134�144.Itoh, Y. and Solomon, H. (1986). Random sequential coding by Hamming distance, J. Appl. Prob. ,Vol.23, 688�695.Itoh, Y. and Ueda, S.(1983). On packing density by a discrete random sequential packing of cubes ina space of n-dimension. Proc. Inst. Statist. Math. 31, 65-69 (in Japanese with English summary).Penrose, M. D. (2001). Random parking, sequential adsorption and the jamming limit, Comm. Math.Phys. 218, 153-176.Poyarkov , A. (2004). On the bound of a random sequential packing of cubes, Master Thesis, MoscowState University.Poyarkov, A. (2007). Random packing by cubes, Journal of Mathematical Sciences, 146, 5577-5583.Renyi A.(1958). On a one-dimensional problem concerning space-�lling, Publ. Math. Inst. Hungar.Acad. Sci., Vol 3, 109�127.
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In�nitesimal rigidity of convex polyhedra and the discreteHilbert-Einstein functionalIvan IzmestievTechnical University of Berlin, Germany.izmestie@math.tu-berlin.deWe discuss a connection between the following two theorems.Theorem 1. Let P ⊂ R3 be a convex polyhedron. Then P is in�nitesimally rigid.In other words, assume that every vertex of P moves with a constant velocity so that all edgelengths don't change in the �rst order (assume for simplicity all faces to be triangles). Then thewhole polyhedron is subject to an in�nitesimal rigid motion.Theorem 2. Let Q ⊂ R3 be a convex polyhedron. Then Q is Minkowski rigid.In other words, assume that the planes of all of its faces are in�nitesimally translated so thatthe area of each face remains constant in the �rst order. Then Q is in�nitesimally translatedas a rigid body.I know of three ways to relate Theorems 1 and 2, and will concentrate on the third one.1. Theorems 1 and 2 can be proved by the same argument, counting the number of signchanges around a vertex, or along the boundary of a face, respectively.2. In�nitesimal rigidity of a polyhedron P can be derived from its Minkowski rigidity, byassociating to an in�nitesimal rotation of a face a parallel translation of it by the normalcomponent of the rotation vector.3. In�nitesimal rigidity of P is equivalent to Minkowski rigidity of its polar dual, as describedbelow.Theorem 2 can be proved as follows. Choose a coordinate origin inside Q. For every faceof Q, consider its support number hi (distance from the origin to the plane of the face) andits area Fi. In�nitesimal translations of faces can be described by variations of the supportnumbers. Therefore Theorem 2 is equivalent to
dim ker

(
∂Fi
∂hj

)
= 3, (2)where the kernel is generated by translations of Q as a rigid body. The equation (2) is provedin the mixed volumes theory.This approach can be dualized in the context of Theorem 1. Choose a coordinate origin inside

P . For every vertex of P , consider its distance ri from the origin. An in�nitesimal isometricdeformation of P results in variations of (ri). Let us see which variations of (ri) can appearin this way. For this, decompose P into pyramids with apex at the origin and faces of P asbases. Every variation of (ri) induces in�nitesimal deformations of pyramids. This results in anin�nitesimal isometric deformation of P if and only if the sum ωi of dihedral angles around theedge joining i-th vertex to the origin remains constant in the �rst order. That is, in�nitesimalisometric deformations correspond to elements in the kernel of (∂ωi

∂rj

). Therefore Theorem 1 isequivalent to
dim ker

(
∂ωi
∂rj

)
= 3, (3)52



where the kernel consists of variations that come from moving the origin.Now, an equivalence between Theorems 1 and 2 is established through a striking identity
∂ωi
∂rj

(P ) = −∂Fi
∂hj

(P ∗), (4)where P ∗ is the polar dual to P with respect to the origin.A further interpretation of these arguments is possible. Note that
Fi =

∂ vol(Q)

∂hi
.Therefore the matrix ( ∂Fi

∂hj

) is symmetric and corresponds to the second variation of the volumeof Q. In the dual setting, we have the discrete Hilbert-Einstein functional
S(P ) =

∑

i

ri(2π − ωi) +
∑

ij

`ij(π − θij),where `ij and θij are the length of, respectively the dihedral angle at, the edge ij of P . Theequation
2π − ωi =

∂S(P )

∂rifollows from the Schl�a�i formula.The duality between the Hilbert-Einstein functional and the volume of the dual is moreapparent in the hyperbolic geometry. The dual object to a convex hyperbolic polyhedron is aconvex polyhedron in the de Sitter space.
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The chromatic number of a normed spaceAndrei KupavskiiMoscow State University, Moscow.kupavskii@yandex.ruThis work concerns the classical Nelson � Hadwiger problem which consists in �nding thevalue χ(Rn) equal to the minimum number of colors needed to paint all the points in Rn sothat any two points at distance 1 apart receive di�erent colors (see [2]). The quantity χ(Rn) iscalled the chromatic number of Rn.The history of the Nelson � Hadwiger problem can be found in many books and surveys(see, e.g., [3], [6]).An important variant of the problem was proposed for normed spaces Rn
K with normsinduced by arbitrary centrally symmetric convex bodies K. Let χ(Rn

K) be the correspondingchromatic number. In [4], the authors obtained the estimate
χ(Rn

K) ≤ cn(lnn)5nwith some constant c, which does not depend on K. Here we substantially improve this result.Theorem 1. The inequality holds
χ(Rn

K) ≤
(lnn+ ln lnn+ ln 4 + 1 + o(1))

ln
√
2

· 4n.Further improvements of the bound in Theorem 1 are possible in the case of the lp-space
Rn
p .Theorem 2. The inequality holds

χ(Rn
p ) ≤ 2(1+cp+δn)n,where δn → 0 with n→∞, cp < 1 for p > 2, and cp → 0 with p→∞.To prove these theorems, we use some techniques similar to those from [5]. In addition, weprove a theorem concerning the chromatic numbers of arbitrary spaces Rn

K with segments of�forbidden distances�. Namely, we de�ne the value χ(Rn
K , A) as the minimum number of colorswhich are needed to paint all the points in Rn

K so that any two points at any distance x ∈ Aapart receive di�erent colors. Let A′ = [1, l].Theorem 3. The following �ve results hold.1. One has χ(Rn
K , A

′) ≤ (2(l + 1) + o(1))n.2. Let p > 2. Then χ(Rn
p , A

′) ≤ (2cp(l + 1) + o(1))n, cp < 1, cp → 0 with p→∞.3. Let l ≥ 2. Then χ(Rn
K , A

′) ≥ (l/2)n.4. Let l ≥ 2. Then χ(Rn
p , A

′) ≥ (b · l)n, where b = p′
√
2

2
and p′ = max

{
p, p

p−1

}.5. Let l ≥ 2. Then χ(Rn
2 , A

′) ≥ (b · l)n, where b ≈ 0, 755 ·
√
2.54



Theorem 3 has an interesting corollary. Indeed, it is known that
(c1m)c2n ≤ max

A, |A|=m
χ(Rn

2 , A) ≤ (3 + o(1))nm (1)with some absolute constants c1, c2 > 0. The �rst result is done in [3]; the second one isan immediate consequence of a bound from [6]. Other results of this kind can be foundin [7]. Anyway, in order to obtain a lower bound like in (1), one should use a set A0 ={√
2p, . . . ,

√
2mp

}, where p is a certain prime number (see [7]). This is due to the speci�city ofthe linear-algebraic method in combinatorics (see [3], [8]) � the only method which is knownto provide good lower bounds for the chromatic numbers. However, it follows from assertion 1of Theorem 3 that
χ(Rn

2 , A0) ≤
(
2
(√

m+ 1
)
+ o(1)

)n
,since A0 ⊂

[√
2p,
√
2mp

] and so l = √m. In other words, Theorem 3 shows, in particular, that
ln (χ(Rn

2 , A0)) = Θ(n lnm).The work is done under the �nancial support of the grant 09-01-00294 of the RussianFoundation for Basic Research, the grant MD-8390.2010.1 of the Russian President, and thegrant NSh�8784.2010.1 of Leading Scienti�c Schools of Russia.References[1] H. Hadwiger, Ein �Uberdeckungssatz f�ur den Euklidischen Raum, Portugaliae Math., 4 (1944), 140- 144.[2] A.M. Raigorodskii, The Borsuk problem and the chromatic numbers of some metric spaces, RussianMath. Surveys, 56 (2001), N1, 103 - 139.[3] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer, 2005.[4] Z. F�uredi, J.-H. Kang, Covering the n-space by convex bodies and its chromatic number, Discretemathematics, 308 (2008), 4495 - 4500.[5] P. ErdHos, C.A. Rogers, Covering space with convex bodies, Acta Arithmetica, 7 (1962), 281 -285.[6] D.G. Larman and C.A. Rogers, The realization of distances within sets in Euclidean space,Mathematika, 19 (1972), 1 - 24.[7] E.S. Gorskaya, I.M. Mitricheva, V.Yu. Protasov, A.M. Raigorodskii, Estimating the chromaticnumbers of Euclidean spaces by methods of convex minimization, Mat. Sbornik, 200 (2009), N6, 3- 22; English transl. in Sbornik Math., 200 (2009), N6, 783 - 801.[8] A.M. Raigorodskii, The linear algebra method in combinatorics, Moscow Centre for ContinuousMathematical Education (MCCME), Moscow, Russia, 2007 (book in Russian).
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On the number of biLipschitz classes of delone setsAlexander MagazinovMoscow State University, Moscow.magazinov-al@yandex.ruWe study properties of biLipschitz equivalence relationship between discrete sets. Thequestion about biLipscitz equivalence of Delone sets was raised by M.Gromov in paper [1].LetM be a metric space. Denote by Bρ(x) a closed ball and by B◦
ρ(x) an open ball of radius

ρ with center at point x. A set A ⊂ M is a Delone set if for some real r and R such that
0 < r < R the following two conditions hold:(1) B◦

r (x)
⋂
B◦
r (y) = ∅ for any x, y ∈ A,(2) ⋃

x∈A
BR(x) =M,Sometimes, Delone sets are called separated nets.Delone sets A ⊂ M1 and B ⊂ M2 in possibly di�erent metric spaces M1 and M2 arebiLipschitz equivalent, if there exists a bijection F : A → B and a real number λ ≥ 1 such thatfor every x, y ∈ A holds

1

λ
dM1(x, y) ≤ dM2(F (x), F (y)) ≤ λdM1(x, y).If we mind the value of λ we call A and B λ-bijective. The mapping F for which the lastinequality holds, is called λ-biLipschitz. If two sets are biLipschitz equivalent we say that theybelong to the same biLipschitz class.We mention some results on biLipschitz equivalence of Delone sets in Euclidean and non-Euclidean spaces. O. Bogopolsky [2] proved that any two Delone sets in hyperbolic space Hdare biLipschitz equivalent. P. Papasoglu [3] showed biLipschitz equivalence (as discrete metricspaces) of two homogeneous trees even with di�erent valences k > 3 and n > 3.In the case of Euclidean space Ed D. Burago and B. Kleiner (see [4]) and C. McMullen (see[5]) independently proved the existence of a Delone set which is not equivalent to the integerlattice Zd.We generalize results of paper [4]. The main result obtained is the followingTheorem. For every integer d ≥ 2 the set of biLipschitz classes in Ed has cardinalitycontinuum.All further arguments refer to the space Ed.The upper estimate for cardinality is trivial due to one A. Garber's lemma (see [6]). Toestablish the lower estimate we will construct a continuum family of pairwise non-equivalentDelone sets. All these sets will belong to some special class.Consider a rectangular coordinate system in Ed. Parallelepipeds (cubes) with edges parallelto coordinate lines are called coordinate.Let Q be a coordinate cube. By m(Q) denote its vertex with the least sum of coordinates.Consider a tiling T of Ed into coordinate cubes such that edge length of every cube belongsto [1, L]. The set A = {m(Q) : Q ∈ T} is obviously a Delone set. We will call all sets obtainedby such a construction L-special.There are two crucial points in our proof.The �rst one is lemma being a discrete analog of Burago and Kleiner's theorem aboutJacobians (see [4, Theorem 1.2]). This lemma allows us for any λ to construct local obstaclesin Delone sets for being λ-bijective to the integer net Zd.56



The second point is considering a continuum set of pairwise non-con�nal (0, 1)-sequences.Each sequence will encode a Delone set, or, more precisely, an arrangement of constructedobstacles in it. Using the property of non-con�nality we will prove that these sets are pairwisenon-biLipschitz equivalent. References1. M. Gromov. Asymptotic invariants for in�nite groups // London Mathematical SocietyLecture Notes, vol. 182, Geometric group theory. eds. J. A. Niblo, M. A. Roller, J. W. S. Cassels,1993.2. Î. Â. Áîãîïîëüñêèé, Áåñêîíå÷íûå ñîèçìåðèìûå ãèïåðáîëè÷åñêèå ãðóïïû áèëèïøè-öåâî ýêâèâàëåíòíû // Àëãåáðà è ëîãèêà, ò. 36, âûï. 3, 1997, 259-272.3. P. Papasoglu. Homogeneous trees are bi-Lipschitz equivalent // Geom. Dedicata, vol. 54,1995, 301-306.4. D. Burago, B. Kleiner, Separated nets in Euclidean space and Jacobians of bi-Lipschitzmaps //Geom. Funct. Anal. vol. 8, 1998, 273-282.5. C. McMullen, Lipschitz maps and nets in Euclidean space // Geom. Funct. Anal. vol. 8,1998, 304-314.6. À. È. Ãàðáåð, Î êëàññàõ ýêâèâàëåíòíîñòè ìíîæåñòâ Äåëîíå // Ìîäåë. è Àíàë. Èíô.Ñèñò., ò. 16, âûï. 2, 2009, 109-118.
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Ê âîïðîñó î ïåðå÷èñëåíèè àðõèìåäîâûõìíîãîãðàííèêîâ â ïðîñòðàíñòâå Ëîáà÷åâñêîãîÂèòàëèé ÌàêàðîâÌîñêîâñêèé Ãîñóäàðñòâåííûé Óíèâåðñèòåò èì. Ì.Â.Ëîìîíîñîâà, Ìîñêâà.vsmak@mail.ruÏåòð ÌàêàðîâÌîñêîâñêèé Ãîñóäàðñòâåííûé Ãîðíûé Óíèâåðñèòåò, Ìîñêâà.pvmakaroff@gmail.comÕîðîøî èçâåñòíà òà ñâÿçü, êîòîðàÿ èìååòñÿ ìåæäó àðõèìåäîâûìè (òðåõìåðíûìè, êî-íå÷íûìè) ìíîãîãðàííèêàìè è ñîîòâåòñòâóþùèìè àðõèìåäîâûìè ðàçáèåíèÿìè äâóìåðíîéñôåðû (ñì., íàïð, [1]). Ïîëíûé ïåðå÷åíü âñåõ àðõèìåäîâûõ (ðàâíîóãîëüíî ïîëóïðàâèëü-íûõ) ìíîãîãðàííèêîâ áûë õîðîøî èçâåñòåí åùå äðåâíèì ãðåêàì. Àêêóðàòíîå èçëîæåíèåèçîãîíàëüíûõ (è èçîýäðàëüíûõ) ðàçáèåíèé ñôåðû (àðõèìåäîâû ðàçáèåíèÿ ÿâëÿþòñÿ ëèøü÷àñòüþ èçîãîíàëüíûõ ðàçáèåíèé) ÷èòàòåëü ìîæåò íàéòè, íàïðèìåð, â ðàáîòå Å.Ñ.Ôåäîðîâà[1]. Îñíîâû òåîðèè èçîýäðàëüíûõ ðàçáèåíèé ïëîñêîñòè Ëîáà÷åâñêîãî ôàêòè÷åñêè èçëîæå-íû â øèðîêî èçâåñòíîì ìåìóàðå À.Ïóàíêàðå [2]. Ïîäðîáíîå èçëîæåíèå (ñ òî÷êè çðåíèÿñîðòîâ) òåîðèè ïëàíèãîíîâ ýâêëèäîâîé ïëîñêîñòè äàíî â ðàáîòàõ Á.Í.Äåëîíå è åãî ó÷åíè-êîâ [3] è [4]. Â äàííîì ñîîáùåíèè ïðåäëàãàåòñÿ ïîäõîä ê ïåðå÷èñëåíèþ âñåõ àðõèìåäîâûõ(à, ñëåäîâàòåëüíî, è äóàëüíûõ ê íèì) ðàçáèåíèé ïëîñêîñòè Ëîáà÷åâñêîãî.Óñëîâèìñÿ ïðèäåðæèâàòüñÿ îáùåïðèíÿòîãî îïðåäåëåíèÿ àðõèìåäîâà (ðàâíîóãîëüíî-ïîëóïðàâèëüíîãî) ìíîãîãðàííèêà êàê (âûïóêëîãî) ìíîãîãðàííèêà, âñå ãðàíè êîòîðîãî -ïðàâèëüíûå ìíîãîóãîëüíèêè, ñðåäè ãðàíåé êîòîðîãî èìåþòñÿ ðàçëè÷íûå, à ãðóïïà ñèì-ìåòðèè ìíîãîãðàííèêà äåéñòâóåò òðàíçèòèâíî íà ìíîæåñòâå åãî âåðøèí. Ðàçáèåíèå (íîð-ìàëüíîå) äâóìåðíîãî ïðîñòðàíñòâà ïîñòîÿííîé êðèâèçíû íà ïðàâèëüíûå ìíîãîóãîëüíèêèíàçûâàåì àðõèìåäîâûì (êîðîòêî: -ðàçáèåíèåì), åñëè ñðåäè ìíîãîóãîëüíèêîâ åñòü ðàçëè÷-íûå, à ãðóïïà ñèììåòðèè ðàçáèåíèÿ äåéñòâóåò òðàíçèòèâíî íà ìíîæåñòâå åãî âåðøèí (óç-ëîâ). Ðàçáèåíèå (íîðìàëüíîå) íà ðàâíûå ïðàâèëüíûå ìíîãîóãîëüíèêè äîãîâîðèìñÿ íàçû-âàòü ïëàòîíîâûìè, èáî îíè ïðèâîäÿò ê ïëàòîíîâûì (ò.å. ïðàâèëüíûì) ìíîãîãðàííèêàì.Àíàëîãè÷íî îïðåäåëÿþòñÿ ïëàòîíîâû è -ðàçáèåíèÿ è àðõèìåäîâû ìíîãîãðàííèêè â áîëååâûñîêèõ ðàçìåðíîñòÿõ.Â ñîîáùåíèè ïîêàçûâàåòñÿ, ÷òî, êàê è â ñëó÷àå ïðàâèëüíûõ ìíîãîãðàííèêîâ â è ïëàòî-íîâûõ ðàçáèåíèé , â ïðîñòðàíñòâå Ëîáà÷åâñêîãî ïîÿâëÿþòñÿ àðõèìåäîâû ìíîãîãðàííèêè ñáåñêîíå÷íûì ÷èñëîì ïðàâèëüíûõ êîíå÷íûõ ãðàíåé (è áåñêîíå÷íîå ÷èñëî èì ñîîòâåòñòâóþ-ùèõ -ðàçáèåíèé). Ïîêàçûâàåòñÿ, ÷òî âñå òå ïðèåìû, êîòîðûå èñïîëüçóþòñÿ äëÿ ïîëó÷åíèÿàðõèìåäîâûõ ìíîãîãðàííèêîâ â ñëó÷àå ýâêëèäîâà ïðîñòðàíñòâà , ïðèìåíèìû è äëÿ ïîëó-÷åíèÿ àðõèìåäîâûõ ìíîãîãðàííèêîâ â ïðîñòðàíñòâå Ëîáà÷åâñêîãî (è àðõèìåäîâûõ ðàçáèå-íèé ïëîñêîñòè Ëîáà÷åâñêîãî). Áîëåå òîãî, â ïðîñòðàíñòâå Ëîáà÷åâñêîãî ïîÿâëÿþòñÿ íîâûåòèïû àðõèìåäîâûõ ìíîãîãðàííèêîâ è íîâûå ñ÷åòíûå ñåðèè àðõèìåäîâûõ ìíîãîãðàííèêîâ.Ïðè ýòîì ïîÿâëÿþùèåñÿ íîâûå ñåðèè âñå äàëüøå è äàëüøå êà÷åñòâåííî óõîäÿò îò èìå-þùèõñÿ ñôåðè÷åñêèõ è ýâêëèäîâûõ àíàëîãîâ. Ýòî íàâîäèò íà ìûñëü î òîì, ÷òî òàêèìñïîñîáîì âñåõ ñåðèé íå ïåðåáðàòü.Âûõîä èç ñîçäàâøåãîñÿ ïîëîæåíèÿ ïîäñêàçûâàåò ìåìóàð À.Ïóàíêàðå [2], ïîñâÿùåí-íûé ôàêòè÷åñêè òåîðèè ïëàíèãîíîâ íà ïëîñêîñòè Ëîáà÷åâñêîãî. Âîçíèêàåò åñòåñòâåííàÿèäåÿ êëàññèôèêàöèè -ðàçáèåíèé ïëîñêîñòè Ëîáà÷åâñêîãî ïî ðîäàì ïîâåðõíîñòåé â ñòèëåÀ.Ïóàíêàðå. Â ñîîáùåíèè ïîêàçûâàåòñÿ êàê ýòà èäåÿ ìîæåò áûòü ðåàëèçîâàíà ïðàêòè÷å-ñêè. Èç ïðèâåäåííûõ ïðèìåðîâ ñòàíîâèòñÿ ÿñíî ïðåèìóùåñòâî ïðåäëàãàåìîãî ïîäõîäà.58



Â çàêëþ÷åíèè ñîîáùåíèÿ áóäåò îáðàùåíî âíèìàíèå íà èñïîëüçîâàíèå ïîëó÷åííûõ ðå-çóëüòàòîâ äëÿ ïîñòðîåíèÿ íîâûõ ðàçíîâèäíîñòåé ìíîãîãðàííèêîâ ñ ïðàâèëüíûìè ãðàíÿìèâ , ðàâíîãðàííî-ïîëóïðàâèëüíûõ ìíîãîãðàííèêîâ, íîâûõ ïðàâèëüíûõ è àðõèìåäîâûõ ìíî-ãîãðàííèêîâ ñ áåñêîíå÷íûìè ãðàíÿìè (ñì. [5], [6]).Ëèòåðàòóðà1. Ôåäîðîâ Å.Ñ. Íà÷àëà ó÷åíèÿ î ôèãóðàõ. Ë. 1953, 409ñ.2. Poincare H. Memoire sur les groupes fuchsciennes. - Acta math., 1882, 1, p. 1-62.3. Äåëîíå Á.Í. Òåîðèÿ ïëàíèãîíîâ. Èçâ. ÀÍ ÑÑÑÐ. ñåð. ìàòåì., 195, ò.23. ñ. 365-386.4. Äåëîíå Á.Í., Äîëáèëèí Í.Ï., Øòîãðèí Ì.È. Êîìáèíàòîðíàÿ è ìåòðè÷åñêàÿ òåîðèÿïëàíèãîíîâ.- Òðóäû Ìàò èí-òà ÀÍ ÑÑÑÐ. Ò. 148. Ë., "Íàóêà 1978, ñ. 109-140.5. Ìàêàðîâ Â.Ñ., Ìàêàðîâ Ï.Â. Ïðàâèëüíûå ìíîãîãàííèêè è ìíîãîãðàííèêè ñ ïðàâèëü-íûìè ãðàíÿìè â ïðîñòðàíñòâå Ëîáà÷åâñêîãî. - Òð. V Âñåðîññèéñêîé íàó÷íîé øêîëû "Ìà-òåìàòè÷åñêèå èññëåäîâàíèÿ â åñòåñòâåííûõ íàóêàõ Àïàòèòû, 12-14 îêòÿáðÿ 2009ã, Èçä-âî"Ê & Ì". 2009, ñ. 43-65.6. Ìàêàðîâ Ï.Â. Ê âîïðîñó î êëàññèôèêàöèè -ðàçáèåíèé ïëîñêîñòè Ëîáà÷åâñêîãî. -Òð. V Âñåðîññèéñêîé íàó÷íîé øêîëû "Ìàòåìàòè÷åñêèå èññëåäîâàíèÿ â åñòåñòâåííûõ íà-óêàõ Àïàòèòû, 12-14 îêòÿáðÿ 2009ã, Èçä-âî "Ê & Ì". 2009, ñ. 34-43.
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Local criterion for crystallographic tilings of EuclideanplaneEvgenii MarininMoscow State University, Moscow.ESMarinin@mail.ruA tiling T of space by polyhedra is called crystallographic (more concretely, m-hedral) ifthe number of orbits of tiles w.r.to the symmetry group Sym(T ) is �nite and equal to m .For simplicity, we consider just face-to-face (in Russian literature after Delone they are callednormal) tilings. The de�nition of m-hedral tiling is based on a global concept of the symmetrygroup of a tiling. The local theory, started in works by Delone, Galiulin et al and developedin works by Dolbilin, Shtogrin, was aimed to give a groupless description of a crystallographictiling in terms of congruent classes of coronae.The corona Cn(P ) about a cell P of radius n is de�ned in a recurrent way. If n = 0 C0(P )is de�ned as the cell P itself. Let Cn−1 be already determined then the corona Cn(P ) is de�nedas a polyhedral subcomplex in T consisting of Cn−1(P ) and all tiles of T sharing a commonhyperface with tiles from this corona. Two coronae Ck(P ) and Ck(P ) belong to one class ifthere is an isometry of space which moves the corona Ck(P ) and Ck(P ) and the center P intothe center The number of classes of coronae of radius k is denoted by Nk. For a given corona
Ck(P ) denote by Gk(P ) a group of all symmetries of Ck(P ) leaving the center P invariant.Note that whereas Nk is monotonically non-decreasing function of k, the sequence of groups ismonotonically reducing: G1 3 G2 3Local Theorem (Delone, Dolbilin, Galiulin, Shtogrin). Given a d-space (Euclidean orSpherical, or Lobachevski) and natural number m, a tiling T of space is m-hedral if and onlyif there is such a positive integer k that (1) Nk−1 = Nk = m; (2) Groupes Gk−1(P ) = Gk(P )for any cell P in the T .In particular, the local theorem implies an upper bound K for the radius of coronae suchthat if for a tiling NK = m then the tiling is m-hedral. However, this upper bound is veryrough.In the talk we will discuss recent results concerning reasonable estimates for the radius Kof coronae such that the condition NK = m implies a tiling to be m-hedral tiling. The nexttheorem is principal:Theorem (E.M.). Given m-hedral tiling in Euclidean plane, then:(1) in any cell the number of its edges does not exceed 12m− 6;(2) The order of the group G2m−1 for all cells in T does not exceed 12.Theorem. The m-hedrality criterion. A tiling in Euclidean plane is m-hedral if and only if
N5m = m;
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Consistency on cubic lattices for determinants of arbitraryordersOleg MokhovMoscow State University, Moscow.mokhov@mi.ras.ru; mokhov@landau.ac.ru; mokhov@bk.ruWe consider relations on elementary N × N squares, N > 2, of the square lattice Z2, andpropose a new type of consistency conditions on cubic lattices that is connected to bendingelementary N × N squares, N > 2, in the cubic lattice Z3. For an arbitrary N we prove suchconsistency on cubic lattices for relations de�ned by the condition that determinants of valuesof the �eld at the points of the square lattice Z2 that are contained in elementary N×N squaresvanish. We also consider some modi�cations and generalizations of this consistency principle.Acknowledgements. This research was supported by the Russian Foundation for BasicResearch (project no. 09-01-00762) and the Program for Support of Leading Scienti�c Schools(project no. NSh-1824.2008.1).[1] O.I.Mokhov. On consistency of determinants on cubic lattices // UspekhiMatematicheskikh Nauk, 2008, Vol. 63, No. 6, pp. 169�170 (In Russian); English translation:Russian Mathematical Surveys, 2008, Vol. 63, No. 6, pp. 1146�1148; arXiv:0809.2032.[2] O.I.Mokhov. Consistency on cubic lattices for determinants of arbitrary orders // TrudyMatematicheskogo Instituta imeni V.A. Steklova, 2009, Vol. 266, pp. 202�217 (In Russian);English translation: Proceedings of the Steklov Institute of Mathematics, 2009, Vol. 266, pp.195�209; arXiv: 0910.2044.
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Unfoldings of doubly coverd polyhedra and space-�llerswith minimum surface area1Chie NaraTokai University, Japan.cnara@ktmail.tokai-u.jpA doubly covered square is a degenerated polyhedron consisting of two congruent squareswhose corresponding edges are identi�ed. The geometric properties of convex unfoldings(developments) of a doubly covered square were studied by J. Akiyama and etc.[1], all suchunfoldings were determined by them, and it was showed that such unfoldings are plane-�llers.We extend these results from the plane to the 3-space ([2]).De�nition 1. Let P be a polyhedron. The doubly covered P ( denoted by D(P )) is thedegenerated polytope in the 4-space consisting P and its congruent copy (denoted by P ∗)whose corresponding faces are identi�ed.De�nition 2. A body W (homeomorphic to a closed unit ball in R3) is called an unfoldingof D(P ) for a polyhedron P if there is a continuous map (denoted by fW,D(P )) from W onto
D(P ) such that(i) fW,D(P ) is locally isometric on the interior of W , and(ii) fW,D(P ) has no 3-dimensional overlaps (that is, for disjoint sets of W the images haveno common interior points).A parallelohedron is de�ned as a polyhedron whose parallel copies tile the 3-space R3 inface-to-face manner. It was proved by E. S. Fedrov that the convex parallelohedra can beclassi�ed into �ve topological types: the cube, the hexagonal prism, the rhombic dodecahedron,the dodecahedron with eight rhombic and four hexagonal faces (the elongated dodecahedron),and the truncated octahedron.Theorem 1. All �ve types of parallelohedra can be obtained as unfoldings of doubly coveredcuboids (rectangular parallelepipeds).By studying the geometric properties of convex unfoldings W of D(P ) for a cuboid P ,under the assumption that W contains P , we can determine all such unfoldings. We de�nea generalized rhombic dodecahedron, a generalized elongated dodecahedron and a generalizedtruncated octahedron.Theorem 2. Convex unfoldings W of doubly covered cuboids D(P ) for a cuboid P areparallelepipeds, k-gonal right prisms (3 ≤ k ≤ 6), generalized rhombic dodecahedra, generalizedelongated dodecahedra and generalized truncated octahedra, under the assumption that Wcontains P .A body W in the 3-space is called a space-�ller of congruent copies of W tile the 3-space withno gaps and no 3-dimensional overlaps.Theorem 3. Every unfolding of D(P ) for a cuboid P is a space-�ller.1This is a joint work with Jin-ichi Itoh 62



We can extend those results from cuboids to more general polyhedra called re�ective space-�llers which are classi�ed into seven types by H. M. Coxeter : the three types of tetrahedra,the three types of triangular right prisms and the cuboid ([2]).As application of Theorem 2 and Theorem 3, we study the Kelvin's problem related to�nding convex space-�llers with minimal surface area ([3]).Theorem 4. Among all convex unfoldings of the doubly covered cuboid with its edge lengths√
2,
√
2 and one, the truncated octahedron has the minimum surface area.References

[1] J. Akiyama, K. Hirata, M. P. Ruiz and J. Urrutia, Flat 2-foldings of convex polygons, in:Combinatorial Geometry and Graph Theory (Proc. IJCCGGT 2003, Bundung), Springer LNCS3330 (2005), 14-24.
[2] J. Itoh and C. Nara, Unfoldings of doubly covered polyhedra and applications to space-�llers,to appear in Periodica Math. Hungar..
[3] J. Itoh and C. Nara, Minimal surface area related to Kelvin's conjecture, to appear inKumamoto J. Math..
The transition constant for arithmetic hyperbolic re�ectiongroupsViacheslav NikulinSteklov Mathematical Institute, Moscow and the University of Liverpool, United Kingdom.V.Nikulin@liverpool.ac.ukThe transition constant was introduced in our 1981 paper and denoted as N(14). Thisconstant is fundamental since if the degree of the ground �eld of an arithmetic hyperbolicre�ection group is greater than N(14), then the �eld comes from special plane re�ection groups.In recent paper, we gave its upper bound 56. Using similar but more di�cult considerations,here we show that the upper bound is 25.As applications, we show that the degree of ground �elds of arithmetic hyperbolic re�ectiongroups in dimensions at least 6 has the upper bound 25 (it was 56 before); in dimensions 5, 4,and 3 it has the upper bound 44 (in our papers, it was 138, and 909 before).These results and developed methods will be important for further classi�cation of thesegroups. See details in arXiv:0910.5217.
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The normal curvatures of hypersurfaces in Hilbertgeometry1Evgenii OlinKarazin Kharkov National University, Ukraine.evolin@mail.ruConsider a bounded open convex domain U ⊂ Rn such that its boundary is a C∞hypersurface with positive normal curvatures in Rn with Euclidean norm ‖ · ‖. For a point
x ∈ U and tangent vector y ∈ TxU = Rn let x− and x+ � be the intersection points of therays x + R−y and x + R+y with absolute ∂U . Then the Hilbert metric is de�ned as follows:
F (x, y) = 1

2
‖y‖

(
1

‖x−x−‖ +
1

‖x−x+‖

). Hilbert geometry is the generalization of the hyperbolicgeometry in Klein interpretation (when U = Bn
r ). Hilbert geometries are also Finsler spaces ofconstant negative �ag curvature −1 .The normal curvature of hypersurface in Finsler space is de�ned as follows [1]. Let ϕ : N →

Mn be a hypersurface in Finsler manifold Mn. A vector n ∈ Tϕ(x)M
n is called the normalvector to N at a point x ∈ N if gn(y,n) = 0 for all y ∈ TxN . The normal curvature kn at apoint x ∈ N in direction y ∈ TxN is de�ned as kn = gn(∇ċ(s)ċ(s)|s=0,n), where ċ(0) = y, and

c(s) is a geodesic in induced connection on N , n � chosen unit normal vector.Hadamard proved that the compact orientable immersed in Euclidean space hypersurfacewith positive Gaussian curvature is embedded as the boundary of convex body [3].C. Currier proved the following generalization of Hadamard theorem for immersions in thehyperbolic space Ln.Theorem ([5]). Let M be a complete connected C∞-riemannian n-dimensional manifold,
n > 2. Suppose that f : M → Ln is a C∞-isometric immersion of M , and there exists a smoothnormal vector �eld ν along f such that all the eigenvalues of the second form of the manifold
M = f(M) in Ln with respect to ν are greater of equal than 1. Let there exists a point p ∈ Mat which all the normal curvatures are strictly greater than 1. Then M is an embedded compacthypersurface which are di�eomophic to the sphere Sn−1.A.A. Borisenko ([4]) generalized Currier's theorem for immersions in a Hadamard manifold.He also obtained the extremal property of hyperbolic space.We generalize Currier's theorem for Hilbert geometry.Consider an immersion ϕ : M → U of C∞-hypersurface M in n-dimensional Hilbertgeometry. Denote by ∂∞M the ideal boundary of M i.e. the intersection of all limit pointsof M with the absolute ∂U . We call the hypersurface M to be regular up to the absolute if eachpoint p ∈ ∂∞M has a neighborhood B such that the immersion ϕ|B :M → U is extendable tothe di�eomorphism ϕ̄|B : M̄ → Ū .Theorem. Consider n-dimensional Hilbert geometry based on the domain U ∈ R2, whichis a bounded open set with the boundary C∞-hypersurface with positive normal curvatures.Consider C∞-immersion ϕ : M → U of a complete connected regular up to the absolutehypersurface M in U . Let all the normal curvatures of M satis�es kn > k0 > 1. Then Mis an embedded compact hypersurface which are di�eomophic to the sphere Sn−1.References[1] Shen Z. Lectures on Finsler Geometry. � Singapore:World Scienti�c Publishing Co. � 2001 �306 p.[2] Rund H. The Di�erential Geometry of Finsler Spaces, � Springer-Verlag, 1959.1This is a joint work with Alexander Borisenko. 64



[3] S. Sternberg. Lectures on Di�erential Geometry. � Prentice-Hall, Englewood Cli�s, N. J., � 1970.� 390 p.[4] Borisenko A.A. Convex Hypersurfaces in Hadamard Manifolds // Progress in Mathematics. �2005. � Vol. 234. � P. 27-39.[5] Currier C. On hypersurfaces of hyperbolic space in�nitesimally supported by horospheres //Trans. of Amer. Math. Society. � 1989. � Vol. 313. � No 1 � P. 420-431.
Singularities of saddle spheresGaiane PaninaInstitute for Informatics and Automation and Saint-Petersburg University, Saint-Petersburg.gaiane-panina@rambler.ruSegre's theorem asserts the following: let a smooth closed simple curve c ⊂ S2 have a non-empty intersection with any closed hemisphere. Then c has at least 4 in�ection points.In the talk, we go one dimension higher: we replace S2 by S3. Instead of simple curves,we treat immersed piecewise linear saddle surfaces which are homeomorphic to S2 ("saddlespheres"). We prove that a piecewise linear saddle sphere Γ ⊂ S3 necessarily has in�ection orre�ex faces. The latter replace in�ection points and should be considered as singular phenomena.This object is not chosen just by chance: the study of closed saddle surfaces was originallymotivated by A.D. Alexandrov's problem.As an application, we prove that a piecewise linear saddle surface cannot be altered in aneighborhood of its vertex maintaining its saddle property.
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On axiomatic parametrizationAlexandru PopaContinental Automotive, Romania.alpopa@gmail.comWhen Euclidean geometry was the only considered one, nobody cares how it relays withother geometric systems. However, when non�Euclidean geometries were developed, theiraxiomatics become important. Construction of new geometry is not trivial in both syntheticand analytic ways. Felix Klein in [1] proposed Erlangen Program, aimed to classify andcharacterize geometries on the basis of projective geometry and group theory. In his work [2],Isaak Yaglom says that: ��nding a general description of all geometric systems [was] consideredby mathematicians the central question of the day�.Interestingly, two great contributors in construction of hyperbolic geometry, J�anos Bolyaiand Nikolai Lobachevsky adopted di�erent ways on achieving their goal. While Bolyai droppedthe V-th postulate of Euclid and developed `absolute geometry', Lobachevsky changed it in acertain way. Author developed a concept of axiomatic depending on parameters, a single set ofprimitives and axioms depending on some parameters that can describe any homogeneousgeometry1, as well as an uniform model for all homogeneous spaces, depending on sameparameters. Author's project, GeomSpace [4], is based on this uniform model.The advantages of axiomatic parametrization are, among others:
• Elaboration of common terminology among di�erent geometries.
• Classi�cation of homogeneous spaces.
• Comparison of geometric properties of di�erent geometries.
• Construction and study of new geometries with given properties.
• Possibility to formulate theorem depending on parameters that are valid for all geometries,and demonstrate them parametric, once for all geometries.
• Develop of depending on parameters equations, equally valid for all geometries, anddeduce them once for all geometries.2000 Mathematics Subject Classi�cation: 51N05, 51N15.References[1] Felix Klein. A comparative review of recent researches in geometry. Bull. New York Math. Soc. 2,(1892-1893), 215-249, 1893.[2] Isaak Yaglom. Felix Klein and Sophus Lie. Birkhauser, 1988.[3] Isaak Yaglom. A simple non-euclidean geometry and its physical basis. Springer, New York 1979.[4] Alexandru Popa. Uniform Theory of Geometric Spaces.http://sourceforge.net/projects/geomspace/�les/Theory, 20101Homogeneous space is a space that looks the same everywhere [7].66



[5] Alexandru Popa. Uniform model of geometric spaces. Acta Universitatis Apulensis Journal 23�28,Alba Iulia, 2009.[6] Edwin B. Wilson & Gilbert N. Lewis. The Space-time Manifold of Relativity. The Non-EuclideanGeometry of Mechanics and Electromagnetics. Proceedings of the American Academy of Arts andSciences 48:387-507, 1912.[7] Lev Landau and Evgeny Lifshitz. Course of Theoretical Physics vol. 2: The Classical Theory ofFields. Butterworth-Heinemann, ISBN 978-0750627689, 1980.[8] Tom Ritchey. Analysis and Synthesis. On Scienti�c Method - Based on a Study by BernhardRiemann. Systems Research, 1991, Vol. 8, No. 4, pp 21-41, Thesis Publishers, ISSN 0731 Revisedversion, 1996.[9] Henry Parker Manning. Non�Euclidean geometry. Boston, U.S.A. GINN & COMPANY, Publishers,1901.
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Invariant polyhedra for families of linear operatorsVladimir ProtasovMoscow State University, Moscow.v-protassov@yandex.ruThe notion of the joint spectral radius (JSR) of several operators appeared in early 60th ina short work of J.K.Rota and G.Strang. Now it has found numerous applications in the controltheory, functional analysis, approximation theory, number theory, wavelets, coding theory etc.The joint spectral radius of a family M = {A1, . . . , Am} of linear operators acting in Rd isde�ned as
ρ̂(M) = lim

k→∞
max

d1,...,dk ∈{1,...,m}

∥∥Ad1 · · ·Adk
∥∥ 1/k

.So, JSR is the exponent of the maximal growth of products of those operators. For example,if the familyM is irreducible (i.e., the operators A1, . . . , Am do not have a nontrivial commoninvariant subspace), then maxd1,...,dk
∥∥Ad1 · · ·Adk

∥∥ � λk where λ = ρ̂(M). This, in particular,implies the crucial property of JSR: ρ(M) < 1 if and only if there is a norm in Rd, in which allthe operators A1, . . . , Am are contractions.One the main problems in the study of JSR is its computation or estimation for givenoperators. This problem is known to be NP-hard. There are no algorithms polynomial withrespect to both the dimension d and the accuracy ε of approximation.We describe a geometrical approach using the notions of extremal norms and invariantconvex bodies of linear operators. A convex body K ⊂ Rd is invariant for a familyM, if
AiK ⊂ λK , i = 1, . . . , m ,where λ = ρ̂(M). Invariant bodies exist for any irreducible family, and may not be unique. Itappears that in most of practical cases the invariant body is a polyhedron, and can be e�cientlyfound. This leads to exact computation of JSR.We analyze the structure of invariant polyhedra and methods for their construction. We alsopresent several applications to problems of real analysis, combinatorics, and number theory,where constructing invariant polyhedra gave complete solutions.
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Borsuk and Nelson � Hadwiger problems for spheres1Andrei RaigorodskiiMoscow State University, Moscow.mraigor@yandex.ruThis work is dealt with two classical and closely connected problems of combinatorialgeometry. The �rst problem was proposed in 1933 by K. Borsuk who asked whether any setof diameter 1 in Rd can be divided into d + 1 parts of smaller diameter (see [1]). The secondproblem is due to E. Nelson and H. Hadwiger. Initially, it was in �nding the value χ(Rd) equalto the minimum number of colors which are needed to paint all the points in Rd so that anytwo points at distance 1 apart receive di�erent colors (see [2]).The history of Borsuk's question as well as that of the Nelson � Hadwiger problem is veryinteresting and even somehow dramatic. It can be found in many books and surveys (see, e.g.,[3], [4], [5],[6]).Important variants of both problems have been proposed for spheres in Rd. Let Sd−1
r ⊂ Rd bethe sphere of radius r with center at the origin. Denote by fr(d) the minimum number of partsof smaller diameter, into which an arbitrary set Ω ⊂ Sd−1

r of diameter 1 can be decomposed.Also, let χ(Sd−1
r ) be the minimum number of colors needed to paint all the points of the sphereso that any two points at distance 1 apart receive di�erent colors.Of course, we have r ≥ 1/2. Moreover, χ(Sd−1

1/2 ) = 2, f1/2(d) = d + 1. The last result isessentially equivalent to the classical Borsuk � Ulam theorem in topology.For r > 1/2, the value χ(Sd−1
r ) was studied, in particular, by L. Lov�asz in [7]. The exactassertion of Lov�asz is as follows: for any r > 1

2
and d ∈ N, the inequality holds χ(Sd−1

r ) ≥ d; if
r <

√
d

2d+2
∼ 1√

2
, i.e., the length of any side of a regular d-simplex inscribed into Sd−1

r is smallerthan 1, then χ(Sd−1
r ) ≤ d+1. Although this result is widely cited (see, e.g., [8]), its second partis completely wrong. Actually, for every r > 1

2
, the quantity χ(Sn−1

r ) grows exponentially, notlinearly. Our results are given below.Theorem 1. For any r > 1
2
, there exist a constant γ = γ(r) > 1 and a function ϕ(d) =

ϕ(d, r) = o(1), d→∞, such that for every d ∈ N, the inequality holds
χ(Sd−1

r ) ≥ (γ + ϕ(d))d.Theorem 2. There exists a constant c > 0 such that for any sequence of radii rd satisfying theinequality
rd ≥

1

2
+

c

d0.475
,we have the bound

χ(Sd−1
rd

) > d+ 1, ∀ d ≥ d0.Theorem 3. There exists a constant c > 0 such that for any sequence of radii rd satisfying theinequality
rd ≤

1

2
+
c

d
,1This is a joint work with Andrei Kupavskii, e-mail:kupavskii@yandex.ru69



we have the bound
χ(Sd−1

rd
) ≤ d+ 1, ∀ d ≥ d0.As for Borsuk's problem, it follows from a paper by J. Kahn and G. Kalai (see [4]) that fr(d)grows like c√d, c > 1, provided r ∼ 1√

2
(Borsuk's question has a negative answer). However, forother values of r, no one knew how to produce estimates. We succeded in �nding non-trivialbounds for fr(d) with any r > 1/2.Theorem 4. For any r > 1

2
, there exist numbers k = k(r) ∈ N, c = c(r) > 1 and a function

δ = δ(d) = o(1) such that
fr(d) ≥ (c+ δ)

2k√
d.Theorem 5. Let r = r(d) = 1

2
+ ϕ(d), where ϕ = o(1) and ϕ(d) ≥ c ln lnd

lnd
for all d and a largeenough c > 0. Then, there exists a d0 such that for d ≥ d0, fr(d)(d) > d+ 1.At the same time, we getTheorem 6. Let r = r(d) = 1

2
+ ϕ(d), where ϕ = O(1/d). Then, fr(d) ≤ d+ 1.The work is done under the �nancial support of the grant 09-01-00294 of the RussianFoundation for Basic Research and the grant MD-8390.2010.1 of the Russian President.References[1] K. Borsuk, Drei S�atze �uber die n - dimensionale euklidische Sph�are, Fundamenta Math., 20 (1933),177 - 190.[2] H. Hadwiger, Ein �Uberdeckungssatz f�ur den Euklidischen Raum, Portugaliae Math., 4 (1944), 140- 144.[3] A.M. Raigorodskii, Three lectures on the Borsuk partition problem, London Mathematical SocietyLecture Note Series, 347 (2007), 202 - 248.[4] A.M. Raigorodskii, The Borsuk problem and the chromatic numbers of some metric spaces, RussianMath. Surveys, 56 (2001), N1, 103 - 139.[5] V.G. Boltyanski, H. Martini, P.S. Soltan, Excursions into combinatorial geometry, Springer, 1997.[6] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer, 2005.[7] L. Lova�sz, Self-dual polytopes and the chromatic number of distance graphs on the sphere, ActaSci. Math., 45 (1983), 317 - 323.[8] L.A. Sz�ekely, Erd�os on unit distances and the Szemer�edi - Trotter theorems, Paul ErdHos and hisMathematics, Bolyai Series Budapest, J. Bolyai Math. Soc., Springer, 11 (2002), 649 - 666.[9] J. Kahn, G. Kalai, A counterexample to Borsuk's conjecture , Bulletin (new series) of the AMS,29, N1 (1993), 60 - 62.
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Delone Sets and the Homometry ProblemMarjorie SenechalSmith College, USA.senechal@science.smith.eduTwo Delone sets A and B in En are said to be homometric if A−A = B−B. 75 years afterthe phenomenon was �rst noted (in crystallography) many questions remain open. Which setsA have homometric partners, and how many? How can we �nd them? What is the geometry ofhomometric pairs? I will explain what is known and what is not known about the homometryproblem, beginning with Delone's brilliant reconstruction of mathematical crystallography from(r,R) systems in the 1930s and concluding with conundrums in quasicrystals.
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Tiling by rectangles and discrete inverse problemsMikhail SkopenkovInstitute for information transmission problems of the Russian Academy of Sciences, Moscow.skopenkov@rambler.ruThis is a joined work with M. Prasolov [6].Tiling problems are popular because they are very visual but often hard to solve [3,4,5].They have applications in architecture and design. The interest to these problems alwaysgrows because of discovery of their relationship with discrete harmonic and complex analysis,probability theory, physics of networks [1,5].We solve the following problem in certain particular cases: which polygons can be tiled byrectangles of given shapes? A classical case of rectangles tilable by squares was considered byM. Dehn in 1903. The general problem for �signed� tilings was solved by K. Keating and J. King[4]. Tilings by rectangles have a celebrated physical interpretation with direct-current circuits,found by R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte. Our new approach is basedon application of inverse problems for direct- and alternating-current circuits.Our �rst result is a necessary condition for a rectangle to be tilable by rectangles of givenratios. By the ratio of a rectangle we mean the horizontal side divided by the vertical one.Theorem 1. Suppose that a rectangle of ratio c can be tiled by rectangles of ratios c1, . . . ,
cn. Then c = C(c1, . . . , cn) for some rational function C(z1, . . . , zn) such that
• C(z1, . . . , zn) has rational coe�cients, i.e., C(z1, . . . , zn) ∈ Q(z1, . . . , zn);
• C(z1, . . . , zn) is degree 1 homogeneous, i.e., C(tz1, . . . , tzn) = tC(z1, . . . , zn);
• if Re z1, . . . , Re zn > 0 then ReC(z1, . . . , zn) > 0.Case n = 1 (respectively, n = 2) of both Theorem 1 and its converse was proved by M. Dehn(respectively, by C. Freiling, M. Laczkovich and D. Rinne). We dot know whether the conversetheorem is true for n ≥ 3.Our second result is a criterion for a rectangle to be tilable by rectangles similar to it butnot all homothetic to it.Theorem 2 For a number c > 0 the following 3 conditions are equivalent :
• a rectangle of ratio c can be tiled by rectangles of ratios c and 1/c (in such a way thatthere is at least one rectangle of ratio 1/c in the tiling);
• the number c2 is algebraic and all its algebraic conjugates distinct from c2 are negativereal numbers.
• for certain positive rational numbers d1, . . . , dm we have

1

d1c+
1

d2c+ · · ·+
1

dmc

= c.
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This result is analogous to a description of rectangles whose similar copies tile a square,obtained by C. Freiling, M. Laczkovich, D. Rinne and G. Szekeres [3]. A short physical proofof the latter result is also obtained. The proof uses alternating-current circuits and reduces theresult to a simple inverse problem for them solved by R. Foster and W. Cauer in 1920s.Our third result is a criterion for a (not necessarily convex) polygon to be tilable by squares.Such a criterion for a rectangle is given by the M. Dehn theorem, and for an L-shaped hexagonwas obtained by R. Kenyon [3]. We reduce the general problem to an inverse problem for dirrect-current electrical circuits solved recently by Y. Colin de Verdiere, E. Curtis and J. Morrow [2].References[1] J. Cannon, W. Floyd, W. Parry, Squaring rectangles: the �nite Riemann mapping theorem,Contemp. Math. 169 (1994), 133�211.[2] E.B. Curtis and J.A. Morrow, Inverse problems for electrical networks, Series on AppliedMathematics 13, World Scienti�c, Singapore, 2000.[3] C. Freiling, M. Laczkovich, D. Rinne, Rectangling a rectangle, Discr. Comp. Geometry 17 (1997),217-225.[4] K. Keating and J.L. King, Signed tilings with squares, J. Comb. Theory A 85:1 (1999), 83�91.[5] R. Kenyon, Tilings and discrete Dirichlet problems, Israel J. Math. 105:1 (1998), 61�84.[6] M. Prasolov, M. Skopenkov, Tiling by rectangles and alternating current, submitted (2010),http://arxiv.org/abs/1002.1356
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Quasiperiodic tilings and cubic irrationalities1.Anton ShutovVladimir State Humanitarian University, Vladimir.a1981@mail.ruLet β > 1 be a cubic Pisot unit. Then for any positive real x we can obtain the greedyexpansion
x =

∞∑

i=N0

a−iβ
−i (5)with ai ∈ Z and

|x−
N∑

i=N0

a−iβ
−i| < β−N (6)Let Φ be a map from Q(β) to R2 de�ned by Φ(x) = (Re x(1), Im x(1)) if algebraic conjugatesto β are complex, and Φ(x) = (x(1), x(2)) if algebraic conjugates to β are real. Here ∗(i) areconjugations in the �eld Q(β). Now suppose that w runs all possible �nite fractional parts with(6) and Sw is the set of the sums (5) whose fractional parts coincides with w. Akiyama [1] provedthat if the expansion (5) is �nite for any x ∈ Z[β−1] then we have a self-a�ne quasiperiodicplane tiling T il(β)

R2 =
∐

w

Φ(Sw). (7)He also establish some interesting results about the connection of the algebraic properties of βand geometric properties of T il(β). Earlier Rauzy studied special case of this tiling in the case
β3 − β2 − β − 1 = 0 [2].In [3] we prove some new geometric properties of the tiling T il(β).Consider a similarity transformation which maps the tile with the point of origin to some�xed tile T from T il(β). The image of the point of origin under this transformation is calleda Rauzy point of the tile T . Denote by R(β) the set of all Rauzy points from the tiling. Notethat the tiling T il(β) consists of only �nite types of tiles. Let R(i)(β) be the set of all Rauzypoints of the tiles of type i.Theorem 1. The set Φ−1(R(i)(β)) is an intersection of the ring Z[β−1] with some right-openinterval. Moreover, Φ−1(R(i)(β)) ⊆ [0; 1).Two tiles from T il(β) are neighbouring if they have a common part of boundary. Let x bea Rauzy point of some tile T . The local star S(x) is a set of vectors traced from this Rauzypoint x to Rauzy points of tiles neighboring T . Each vector has weight, the number equal tothe type of the neighboring tile.Theorem 2. The tiling T il(β) has only �nite type of local stars. Moreover, if R̂(i)(β) is theset of all Rauzy points with local star of type i then Φ−1(R̂(i)(β)) is an intersection of the ring
Z[β−1] with some right-open interval.Now let Cn(X) be the n-crown of some set of tiles X . Let NT il(β)(n) be a number ofequivalence classes of n-crown of the tiles from T il(β). The function NT il(β)(n) is called acomplexity function of the tiling.1This work was partially supported by RFBR, grants N 08-01-00326, 08-02-00576.This is a joint work with A.V.Maleev and V.G.Zhuravlev74



Theorem 3. In any tiling T il(β) there exists the set Nucl(β) such that the complexity function
NT il(β)(n) is equal to the number of the tiles in n-crown Cn(Nucl(β)). Moreover, di�erent tilesfrom Cn(Nucl(β)) have di�erent n-crowns.Now let T0 be a tile from T il(β) consisting the point of origin. Then we have the folowingconjecture.Conjecture 1. For any tiling T il(β) there exists a convex centrosymmetric polygon pol(β) suchthat

lim
n→∞

Cn(T0) \ Cn−1(T0)

n
= pol(β).References[1] Akiyama S. Self a�ne tiling and Pisot numeration system// "Number Theory and itsApplications Kluwer, 1999, pp. 7-17.[2] Rauzy G. Nombres Algebriques et substitutions // Bull.Soc.France, 110, 1982, pp. 147-178.[3] Shutov A.V., Maleev A.V., Zhuravlev V.G. Complex quasiperiodic self-similar tilings: theirparameterization, boundaries, complexity, growth and similarities // Acta Crystallogrphica, A66,2010, pp. 427-437.

Surfaces in three-dimensional Lie groupsIskander TaimanovNovosibirsk State University, Novosibirsk.taimanov@math.nsc.ruWe give a survey of recent progress in theory of surfaces in three-dimensional Lie groupsand, in particular, expose results obtained via the spinor representation of surfaces.
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The strong thirteen spheres problem1Alexey TarasovInstitute for System Analysis, Moscow.tarasov@isa.ruThe Tammes problemIf n unit spheres kiss the unit sphere in Rd, then the set of kissing points is an arrangementon the central sphere such that the (Euclidean) distance between any two points is at least 1.So the kissing number problem can be stated in other way: How many points can be placed onthe surface of Sd−1 so that the angular separation between any two points is at least 600?Denote by dN the largest angular separation that can be attained in a spherical code on
S2 containing N points. In other words, how are N congruent, not overlapping circles on thesphere to distribute when their common radius of the circles has to be as large as possible?This question, also known as problem of the �enimated dictators�, was �rst asked by the Dutchbiologist Tammes (1930) who was led to this problem by examining the distribution of theopenings on the pollen grains of di�erent �owers.The Tammes problem presently solved only for some small values of N : for N = 3, 4, 6, 12by L. Fejes T�oth; for N = 5, 7, 8, 9 by Sch�utte and van der Waerden; for N = 10, 11 by Danzer;and for N = 24 by Robinson.The Tammes problem for N = 13The �rst unsolved case of the Tammes problem is N = 13 which is particularly interestingbecause of its relation to the kissing problem and the Kepler conjecture.It's clear that the equality k(13) = 12 implies d13 < 600. B�oroczky and Szabo proved that
d13 < 58.70. Recently Bachoc and Vallentin have shown that d13 < 58.50.We note that one can construct an arrangement of 13 points on S2 such that the distancebetween any two points of the arrangement is at least 57.13670. This arrangement is shown inFig. 1. In the paper we show that this arrangement is the best possible and so d13 ≈ 57.13670
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12 13Ðèñ. 1: Graph with best known d13.Irreducible graphsCosider some arrangementM of n points on the shpere. Mark all minimal distances betweenpoints. Denote this graph by F (M).De�nition 6. Irreducible graph The graph F (N) is irreducible if altering of each point of Mdoes not improve minimal distance.Irreducible graph has some properties (citation ??):1This is a joint work with Oleg R. Musin. 76



1. Index of any vertex can be 0, 3, 4, 5.2. All angles of adjacent edges are less than π.3. For n ≤ 17, there are no possible septagons and higher.4. For n ≤ 17 free point can be inside ony hexagon, and only one point per hexagon.5. Danzers trick. Consider some face f and its vertex vi. Let v′i be a point inside f andsymmetrical to vi above line vi−1vi+1 passing through adjacent vertices. So for some jdistance v′ivj should be less than minimal. Danzer proved that distance from v′i to othervertices is grater than minimal distance. So if also each v′ivj ≤ d13 we can alter vi to v′i.Danzer's trick does not improve miniaml distance, but eliminates at least one edge ofgraph or splits face into smaller.(is it correct place ?? Danzer trick also doesnot improve minimal distance bbut decreasesnumber of minimal distances of graph)Scheme of the algorythmWe assume that best graph is known aggangement (�g. 1). We consider all planar graphsatisfying properties of irreducible graphs: three-connected planar, index of each vertex is notmore than 5, number of sides of each face is not more than 6.We consider each such graph as possible irreducible with maximal minimal distance andtrying to disproof that it is possible.For checking feasability of a given graph we consider each angle of any graph face asindependent variable. We write known constrains for these variables and later prove that thisset of non-linear constrains does not have any solution. In the case of success we consider graphas unfeasable and eliminate it.
Γ
(3)
13 Γ

(1)
13 Γ

(2)
13Ðèñ. 2: Irreducible graphs in�nitisimally close to Gbest: with pentagon, with empty hexagon,with hexagon containing free pointAfter using program only three extra graphs are left (�g. 2). It is best possible variant forcomputer program, because for this graphs maximal minimal distance can be arbitrary closeto assuming value of d13 � 57.13670.
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Self-a�ne polyhedra and p-radius of linear operatorsAndrey VoynovMoscow State University, Moscow.an.voynov@gmail.comBody X ⊂ Rd (convex compact with non-empty interior) is called self-a�ne with �nitecollection of nondegenerate a�ne operators of partitioning A1, . . . , Ak if X =
⋃k
i=1AkX and if

i 6= j, then sets AiX,AjX has no common inside points. Bodies AiX are elements of partition.Bodies AiAjX, j = 1, . . . , k impose self-a�ne partition of body AiX, i = 1, . . . , k, thus we caniterate given partition. Body X is called segmenting by collection of a�ne operators of partition
A1, . . . Ak, if µn(ε) = µ(∪Ai1 . . . AinX| diam(Ai1 . . . AinX) > ε)→ 0 by n→∞ for each ε.Theorem 1. Any segmenting self-a�ne body is a polyhedron.Thus, study of segmenting bodies reduces to study of polyhedrons. It makes sense togeneralize the de�nition of segmenting polyhedra in the event of not self-a�ne polyhedra. Latwe have a body X and collection of a�ne operators (possibly degenerate) A1, . . . Ak, such that
AiX ⊂ X, i = 1, . . . k. Body X is called compressible if for each ε > 0 there is a composition ofsource operators Âε, such that diam(ÂεX) < ε, or ‖Âε‖ < ε.Theorem 2. Polyhedron is not compressible if and only if there is a set G of nonintersectingfaces, such that under action of each operator Ai, AiG ⊂ G, in addition each face from Gcontains image of some face from G and |G| > 2.As a corollary we deduce a simple criterion to check, is a polyhedron segmenting.The results about self-a�ne segmentic polyhedra can be applied in the theory of self-a�nefractals. In [1] by �nite partition of segment were built fractal curves in Rd. It's possible togeneralize ideas from this work to fractal surfaces and bene�cate their combinatorics by self-a�ne segmentic polyhedrons. It should be noted, that it's not a constructive algorithm to �nda fractal surface.LetK ⊂ Rd′ be �xed self-a�ne segmentic polyhedron with operators of partition A1, . . . , Ak.Suppose we are given a family of a�ne operators B̃ = {B̃1, . . . , B̃k}, acting in Rd. Let B =
{B1, . . . , Bk} be the family of the associated linear operators in RdA fractal surface of a family of a�ne operators B̃ is a summable function v ∈ Lp(K) : K →
Rd satisfying the equation:

v(t) = B̃mv(A
−1
m (t)), t ∈ AmK, m = 1, . . . k (8)For a given n ∈ N and for any sequence σ ∈ {1, . . . , k}n we write Πσ for the product

Bσ(1) . . . Bσ(n). Also for any p ∈ [1,∞) denote by Fn(p) = Fn(p,B) the value [k−n∑σ ‖Πσ‖p]1/p.For given p ∈ [1,+∞] the p-radius of linear operators of the family B is the value ρp = ρp(B) =
limn→∞[Fn(p,B)]1/n.Theorem 3. For an irreducible family of a�ne operators Eq. (8) possesses a summable solution
v(t) if and only if ρ1(krB) < 1. This solution is unique. If for some p ∈ [1,+∞] one has
ρp((kr)

1/pB) < 1, then v ∈ Lp. For p < ∞ the converse is also true: if v ∈ Lp, then ρp < 1. If
v ∈ L∞, then ρ∞ 6 1. 78



Results about compressible polyhedra are applied in the matrix theory. Suppose there is acollection of stochastic nonnegative matrixes A1, . . . , Ak, acting in Rd. Was found a simplecriterion, that practically each product Ai1 . . . Ain . . . converges. Herewith image of spaceconverges to a line and composition converges to a matrix rank 1. In terms of Markov's chainsit means converge of any Markov's process with probability 1.Theorem 4. For family of stochastic matrixes A1, . . . , Ak we have ρp(A1, . . . , Ak) < 1 for all
p > 1 if and only if for each two indexes t1, t2 6 d there is product Π of given matrixes suchthat for some t we have (Π)ti > 0 and (Π)tj > 0.In literature (see [2, 3, 4] and references therein) conditions, that for each sequence {it} andcollection of stochastic matrixes A1, . . . , Ak, limit limn→∞ ‖Ai1 |span{K} . . . Ain |span{K} ‖ = 0,were detailed studied. Such matrixes associate with convergence of subdivision-algorithms. In [2]it's shown that this check is not solvable algorithmic in a polynomial time. We weaken conditionin suggest that this limit converges with probability 1 and represent polynomial algorithm tocheck.In [2] was found the algorithm to check, is there fractal curve for family of stochasticmatrixes. We represent algorithm, built with theorem 4, considerably simplifying check,moreover making generalization in case of fractal surfaces.References[1] V.Yu.Protasov. Extremal Lp-norms of linear operators and self-similar functions, � Linear Algebraand its Applications 428 (2008) 2339-2356.[2] C.A.Micchelli, H.Prautzsch. Uniform re�nement of curves, � Linear Algebra and its Applications114/115 (1989) 841-870.[3] I.Daubechies, J.C.Lagarias. Corrigendum/addendeum: Sets of matrices all in�nite products ofwhich converge, � Linear Algebra and its Applications 327 (2001) 69-83.[4] R.-Q.Jia, D.-X.Zhou. Convergence of subdivision schemes associated with nonnegative masks, �Siam J. Matrix Anal. Appl. Vol.21 No.2 (1999) 418-430.
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On the study of dihedral folding tilings of the sphereElizaveta ZamorzaevaState University of Moldova, Moldova.zamorzaeva@yahoo.comA tiling of the sphere with disks is called dihedral if any disk of the tiling is congruent toone of two �xed disks. A dihedral edge-to-edge tiling of the sphere with geodesic polygons iscalled folding if all vertices are of even valency and the sums of alternating angles around eachvertex are equal to π.Portuguese mathematicians d'Azevedo Breda and Santos have found dihedral folding tilingsof the sphere with spherical triangles and spherical parallelograms. In [1] these authorsclassi�ed the symmetry groups of the obtained dihedral folding tilings of the sphere, as wellas determined, for each case, the number of transitivity classes of polygons (isohedrality) andvertices (isogonality).The idea of B. N. Delone to classify tilings using so-called Delone classes gave rise to somefruitful methods for obtaining tilings.In works [2, 3] the author of this thesis classi�ed 2-isohedral tilings of the sphere usingDelone classes. It prompts another approach to researching dihedral folding tilings. First select2-isohedral tilings with all vertices of even valency. It was found that tilings having this propertyare with two classes of triangles, with triangles and quadrangles, with triangles and pentagons,with triangles and hexagons. Then, examining the metric of tiling, check the sum of alternatingangles around each vertex.References1. A. M. d'Azevedo Breda and A. F. Santos. Symmetry groups of a class of spherical foldingtilings. Applied Mathematics and Information Sciences, 3 (2009), 123�134.2. E. A. Zamorzaeva. Classi�cation of 2-isohedral tilings on the sphere. Bul. Acad. �St. Rep.Moldova. Matematica, No. 3 (1997), 74�85 (in Russian).3. E. Zamorzaeva, Non-fundamental 2-isohedral tilings of the sphere. Bul. Acad. �St. Rep.Moldova. Matematica, No. 2 (2008), 35�45.
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Translated directions on the surface of the conformal spaceTatyana ZverevaChuvash State Pedagogical University, Cheboksary.tz-84@mail.ruConsider a multi-dimensional surface Vm ⊂ Cn , referred to semi-isotropic semi-orthogonalframe R = {Aλ}, λ, µ = 1, n+ 1. In this frame the equations: ωα0 = 0, ωjα = Λjαkω
k
0 , ω

α
i =

Λαijω
j
0,Λ

α
[ij] = 0 (i, j = 1, m, α, β = m+ 1, n) are true. We are given the normal framing [1] ofsurface Vm, determined by the �eld of quasitensor x0i :dx0i + x0iω

0
0 − x0jωji + ω0

i = x0ijω
j
0. In thiscase, the normal connection ∇⊥ is induced on the surface Vm ⊂ Cn.Presetting the multi-dimensional surface Vm in the conformal space Cn induces a regular

m-dimensional quadratic hyperband Hm in projective space Pn+1. Consider a regular quadratichyperband Hm ⊂Pn+1, that is mutual and dual way normalized by �elds of normals of the �rstNn−m+1 and second Nm−1 kinds.The condition of parallelism of a smooth �eld of the directions [A0M], belonging to the �eldNn−m+1 of normals of the �rst kind of the hyperband Hm ⊂Pn+1 in normal connection ∇⊥, bya displacement along any curve due to the surface Ṽm ⊂ Q2
n ⊂Pn+1, has the form:

dxα + xβ(2ωαβ −Θα
β) + xn+1(aαn+1kω

k
0 − aαn+1x

0
sω

s
0 − gsjx0jωαs ) = xαΘ, dxn+1 = xn+1Θ.Based on these conditions is proved:Theorem 1. In any normal framing of the surface Vn−2 ⊂ Cn , the �eld of 2-dimensionalcharacteristics [A0An−1An] of the hyperband Hn−2 ⊂Pn+1 translates in the normal connection

∇⊥.The characteristic [A0An−1An] of the hyperband Hn−2 ⊂Pn+1 by Darboux mapping is animage of 2-parametric bundle of hyperspheres Q = ηαAα + η0A0, tangential to each other atthe point A0 ∈ Vn−2. Theorem 1 can be formulated in terms of conformal space Cn:Theorem 2. In any normal framing of the surface Vn−2 ⊂ Cn �eld of 2-parameter bundle oftangential hyperspheres Q = ηαAα + η0A0 (α = n− 1, n) of submanifold Vn−2 translates in thenormal connection ∇⊥.Let the �eld of lines [A0M] coincides with the �eld of invariant straight lines h ≡ [A0Nn+1].Then valid:Theorem 3. The �eld of invariant straight lines h ≡ [A0Nn+1] on the hyperband Hm ⊂Pn+1,determined by a quasitensor �eld x0i , is parallel in the normal connection ∇⊥ if and only if thetensor Aαn+1k is equal to zero.A line [A0Nn+1] in Pn+1 by Darboux mapping is an image of the bundle of the orthogonalhyperspheres P = ξn+1Nn+1 + ξ0A0. Theorem 3 can be formulated in terms of the conformalspace Cn:Theorem 4. Field of invariant bundle of hyperspheres P = ξn+1Nn+1+ξ
0A0 tangential to eachother at the points A0 ∈ Vm, determined by the �eld of quasitensor x0i , is parallel in the normalconnection ∇⊥ if and only if the tensor Aαn+1k is equal to zero.References[1] M. A. Akivis. Conformal di�erential geometry and its generalizations / M. A. Akivis,V. V. Goldberg. - USA, 1996. - 384 p. 81



Section �Topology�Geometric approach to stable homotopy groups of spheres:abelian and quaternionic structure for mappings withsingularities.Petr Akhmet'evIZMIRAN, Russia.pmakhmet@mi.ras.ruDenote by RPn−d the standard n−d�dimensional projective space, assuming that n−d ≡ 1
(mod 2), denote by Sn−2k/i the standard n − 2k�dimensional lens space (mod 4), assuming
n−2k ≡ 3 (mod 4). Consider generic PL�mapping d : RPn−d → Rn and denote by (Nn−2d, ∂N)the polyhedron with boundary of self-intersection points of the mapping d. The this polyhedron
Nn−2d \ ∂N is de�ned by the formula:

Cl{[(x, y)] ∈ RPn−d × RPn−d/ ∼ | x 6= y, d(x) = d(y)}.The boundary ∂N of this polyhedron Nn−2d consists of critical points of the mapping d suchthat the following natural inclusion ∂N ⊂ RPn−d is well-de�ned.Analogically, consider generic PL�mapping c : Sn−2k/i→ Rn and denote by (Ln−4k, ∂L) thepolyhedron with boundary of self-intersection points of the mapping c. Its boundary ∂L consistsof critical points of the mapping c such that the following natural inclusion ∂L ⊂ Sn−2k/i iswell-de�ned. Denote by L̄n−4k the canonical 2-sheeted covering over the polyhedron Ln−4k (withrami�cation over the boundary ∂N). This covering is de�ned by the formula:
Cl{(x, y) ∈ Sn−2k/i× Sn−2k/i | x 6= y, c(x) = c(y)}.The following natural inclusion ∂L ⊂ L̄n−4k and the following natural mapping L̄n−4k ⊂

Sn−2k/i (this mapping is an inclusion in the case 6k > n) are well-de�ned.Theorem 1. There exists a mapping d : RPn−d → Rn such that there exists a mapping
κ : Nn−2d → K(Z/2, 1) with the following boundary condition: the restriction κ|∂N : ∂N →
K(Z/2, 1) coincides with the composition ∂N ⊂ RPn−d ⊂ K(Z/2, 1).Theorem 2. Assuming n = 4k+(2σ−1), n = 2`−1, ` ≥ 7, σ =

[
`−1
2

], there exists a mapping
c : Sn−2k/i→ Rn such that the polyhedron Ln−4k consists of two components Ln−4k

Q and Ln−4k
Hb

.The polyhedron Ln−4k
Q is a closed manifold with no boundary. The polyhedron Ln−4k

Hb
containsboundary ∂L ⊂ Ln−4k

Hb
. Moreover, the following conditions are satis�ed:�1. There exists a mapping ζQ : Ln−4k

Q → K(Q, 1), where Q is the group of the order 8 of theunite quaternions, Ia ⊂ Q is the subgroup of the order 4 of complex integers, such that the 2-sheeted covering L̄n−4k
Q → Ln−4k

Q , which is induced by the 2-sheeted coveringK(Ia, 1)→ K(Q, 1)over the target space, coincides with the canonical 2-sheeted covering over Ln−4k
Q .�2. There exists a mapping ζHb

: Ln−4k
Hb

→ K(Hb, 1), where Hb is the group of the order
8, isomorphic to the direct product of the cyclic group Ia of the orders 4 and the elementarygroup Z/2 of the order 2. The subgroup Hb contains the subgroup Ia ⊂ Hb. The 2-sheetedcovering L̄n−4k

Hb
→ Ln−4k

Hb
with the rami�cation over ∂L, induced by the 2-sheeted covering

K(Ia, 1)→ K(Hb, 1) over the target space coincides with the canonical 2-sheeted covering withthe rami�cation over Ln−4k
Hb

. 82



The mapping κ constructed in the Theorem 1 is called a relative abelian structure forthe mapping d. The pair of mappings (ζQ, ζHb
) constructed in Theorem 2 is called a relativequaternionic structure of the mapping c. The theorems are required, in particular, to obtaina new proof the well-known Adams Theorem on Hopf Invariants, see the paper by the authorarXiv:1005.1005.

On the KO-theory of toric spaces.Anthony BahriRider University, USA.bahri@rider.eduCentral in toric geometry and topology are several important spaces which include moment-angle complexes, the Davis-Januszkiewicz space and toric manifolds. In any complex-orientedcohomology theory, the cohomology rings of many of these spaces have elegant descriptions interms of the underlying combinatorics. For KO-theory however the situation is more complex.Even so, a surprising amount of the structure does survive from the complex-oriented case. Areport of recent joint work with:Luis Astey, Martin Bendersky, Fred Cohen, Don Davis, SamGitler, Mark Mahowald, Nigel Ray and Reg Wood.
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On new family of explicit Riemannian SU(4)-holonomymetrics1.Yaroslav BazaikinSobolev Institute of Mathematics, Russia.bazaikin@math.nsc.ruThe Calabi metrics founded explicitly in [1] were the �rst examples of complete Riemannianmetrics with SU(2n)- and Sp(n)-holonomy. These metrics are de�ned on spaces of C-bundlesover the K�ahler-Einstein manifold F . We constructs in explicit algebraic form one-parameterfamily of complete special K�ahler metrics, �joinning� these two Calabi metrics in dimensioneight for one special choice of F .Theorem [2]. For 0 6 α < 1 every Riemannian metrics of the family
ḡα = r4(r2−α2)(r2+α2)

r8−2α4(r4−1)−1
dr2 + r8−2α4(r4−1)−1

r2(r2−α2)(r2+α2)
η21 + r2(η22 + η23)

+(r2 + α2)(η24 + η25) + (r2 − α2)(η26 + η27),is complete smooth metric with SU(4)-holonomy on the space of canonical complex line bundleover the manifold of complex 3-�ags in C3. Metric ḡ0 is isometric to the Calabi metric [1]with SU(4)-holonomy; metric ḡ1 is isometric to the Calabi metric [1] on T ∗CP 2 with Sp(2)-holonomy.In the above formulas r is radial coordinate in the �bres of bundle, one-form η1 is dual toangle coordinate on the �bre and one-forms η2, . . . , η7 generates leftinvariant co-frame on F .References.[1] Calabi E. Metriques kahleriennes et �bres holomorphes // Ann. Ecol. Norm. Sup. 1979.V. 12. P. 269�294.[2] Ya.V. Bazaikin, E.G. Malkovich. The Spin(7)-structures on complex line bundles andexplicit Riemannian metrics with SU(4)-holonomy. 2010. arXiv:1001. 1622v2 [math.DG]. P.1�11.

1This is a joint work with Eugene Malkovich. The �rst author was supported RFBR (grants 09-01-00598-a,09-01-12130-o�-m and 10-01-92102-YaF-a); The second author was supported RFBR (grants 09-01-00598-a, 09-01-00142-a) and Federal Target Grant �Scienti�c and educational personnel of innovation Russia� for 2009-2013(government contract No. 02.740.11.0429) 84



Toric Degenerations and Exact Bohr-SommerfeldCorrespondenceDaniel M. BurnsUniversity of Michigan, USA.dburns@umich.eduWe consider compact, k�ahler Hamiltonian toric manifolds, where the underlying integrablesystems are smooth, but the associated torus action is singular. Interesting examples areprovided by the (classical) Gelfand-Cetlin systems. On such a manifold, there are two naturalquantizations possible, one by holomorphic quantization considering sections of a quantizingline bundle, and the other is by the real polarization given by the simultaneous levels of theHamiltonians at integer values, so-called Bohr-Sommerfeld quantization. The Bohr-Sommerfeldcorrespondence should show an isomorphism to as high a degree as possible between these twoquantizations. The exact Bohr-Sommerfeld correspondence should be a linear map between thetwo Hilbert spaces giving such an isomorphism. This question was considered a few years agoby Andrey Tjurin.The Bohr-Sommerfeld condition yields distributional sections to the quantizing line bundlesupported on the Bohr-Sommerfeld levels. The natural guess for the implementation for theBohr-Sommerfeld correspondence would be the Bergman projector from distributional sectionsto holomorphic suggestions. For toric varieties with smooth Hamiltonians, this is true andeasy to see, by character decompositions. For systems like the Gelfand-Cetlin systems thisis impossible because the singular torus action is not holomorphic and does not give arepresentation on the holomorphic sections of the quantizing line bundle. We describe a methodto show this which uses degeneration to singular toric varieties, singular algebraic varietieswith holomorphic torus action, and a continuity under deformation of integrals of holomorphicsections taken along Bohr-Sommerfeld levels. In passing we discuss geometric quantization forthe real polarization given by the torus action, and the relation to classical Delzant theorygeneralized to singular integrable systems like Gelfand-Cetlin. Relations with classical geodesic�ows on rank one symmetric spaces are also discussed.Parts of this work are joint projects with V. Guillemin and A. Uribe-Ahumada.
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Causality in space-times, Low conjecture and the partialorder on Legendrian spheres1Vladimir ChernovDartmouth College, USA.Vladimir.Chernov@dartmouth.eduLet (Xm+1, g) be a space-time, i.e. a time oriented Lorentz manifold. For x, y ∈ X we saythat y is in the causal future of x if there is a future directed nonspacelike curve from x to y.This is denoted by x 6 y. If the space-time is causal, then the relation 6 gives a partial orderon it, and we say that x, y are causally related if x 6 y or y 6 x.A space-time X is globally hyperbolic if it is causal and the intersection of causal past andcausal future of any two points in X is compact. The classical theorem of Geroch combinedwith the recent results of Bernal and Sanchez show that a globally hyperbolic (Xm+1, g) isdi�eomorphic to M × R, where each M × t is the so called spacelike Cauchy surface of X.The space N of non-parametrized future directed light rays (null geodesics) in X can beidenti�ed with the spherical cotangent bundle ST ∗M . All the light rays through x ∈ X formthe Legendrian sphere in N that is called the sky Sx of x.We consider the space L of all Legendrian spheres in ST ∗M that are isotopic to a �berof ST ∗M and given two such spheres S1, S2 we say that S1 6 S2 if there is a non-negativeLegendrian isotopy of S1 to S2. We show that if the universal cover of M is not compact, then
S1 6 S2 is indeed a partial order on L and the inclusion X → L, x→ Sx preserves the partialorder.This implies that two events x, y in such (Xm+1, g) are causally related if and only if theLegendrian link (Sx, Sy) is nontrivial. In the cases where M is an open 2-manifold this givesthe proof of the Low conjecture, and when M = R3 this gives the proof of the Legendrian Lowconjecture formulated by Natario and Tod.Very often the fact that (Sx, Sy) is (topologically) nontrivial can be detected by thegeneralized linking numbers constructed in our works with Yuli Rudyak.Legendrian linking is not equivalent to causality when the space-time has a refocussingLorentz metric. The existence of such a metric seems to be closely related to the Y x

l Riemannmanifold, i.e. manifolds for which there is a point x and a number l > 0, such that all the unitspeed geodesics starting from x return back to x at time l. If time permits, we will discuss somerecent progress relating causality, refocusing and generalizations of Y x
l -manifolds obtained inthe works of Kinlaw, Low, Nemirovski, Rudyak, Sadykov and myself in more detail.References[1] V. Chernov, P. Kinlaw, and R. Sadykov: Topological Properties of Manifolds Admitting a Y x-Riemannian Metric. Preprint 2009.[2] V. Chernov, S. Nemirovski: Legendrian links, causality, and the Low conjecture. Geom. Funct.Anal. 19 (2010), 1320-1333[3] V. Chernov, S. Nemirovski: Non-negative Legendrian isotopy in ST ∗M. Geom. Topol. 14 (2010),611-6261This is a joint work with Stefan Nemirovski from the Steklov Mathematical Institute, Moscow,stefan@mi.ras.ru 86



[4] V. Chernov, Yu. B. Rudyak: Linking and causality in globally hyperbolic space-times.Comm. Math. Phys. 279, 2008, no. 2, 309�354.[5] P. Kinlaw: Refocusing of Light Rays in Space-Time arXiv preprint 2010[6] R. J. Low, Twistor linking and causal relations, Classical Quantum Gravity 7 (1990), 177�187.[7] R. J. Low, Twistor linking and causal relations in exterior Schwarzschild space, ClassicalQuantum Gravity 11 (1994), 453�456.[8] R. J. Low: Celestial Spheres, Light Cones and Cuts. J. Math. Phys. 34 (1993), no. 1, 315-319.[9] R. J. Low: The space of null geodesics. Proceedings of the Third World Congress of NonlinearAnalysts, Part 5 (Catania, 2000). Nonlinear Anal. 47, 2001, no. 5, 3005�3017[10] R. J. Low: The space of null geodesics (and a new causal boundary). Lecture Notes in Physics692, Springer, Berlin Heidelberg New York, 2006, 35�50.[11] J. Natario and P. Tod: Linking, Legendrian linking and causality. Proc. London Math. Soc. (3)88 (2004), no. 1, 251�272.
Real Bott manifolds and acyclic digraphs.Suyoung ChoiOsaka City University, Japan.choi@sci.osaka-cu.ac.jp, http://math01.sci.osaka-cu.ac.jp/ choiA real Bott manifold is a closed smooth manifold obtained as the total space of an iterated

RP 1-bundles starting with a point, where each RP 1-bundle is the projectivization of theWhitney sum of two real line bundles. The di�eomorphism types of real Bott manifolds canbe completely characterized real Bott manifolds in terms of three simple matrix operations onsquare binary matrices symmetrically permutable to strict upper triangular form.This characterization can be visualized combinatorially in terms of graph operationson directed acyclic graphs. Using this combinatorial interpretation, we prove that thedecomposition of a real Bott manifold into a product of indecomposable real Bott manifolds isunique up to permutations of the indecomposable factors.This talk is based on a part of joint work with Professors M. Masuda and S.-i. Oum.
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Enumerative problems for logarithmic forms on hyperplanecomplements.Graham DenhamUniversity of Western Ontario, Canada.gdenham@uwo.caThe study of logarithmic vector �elds and logarithmic forms on unions of hyperplanes inprojective space has a 30-year history that has revealed some interesting subtleties. For example,a well-known formula of Solomon and Terao expresses the characteristic polynomial of thearrangement (matroid) in terms of a specialization of the Hilbert series of modules of logarithmicdi�erentials: however, the Hilbert series of such a module is not uniquely determined by thematroid. Along the same lines, a result of Mustata and Schenck gives the Chern classes of thesheaf of logarithmic 1-forms in terms of the same characteristic polynomial, in the interestingspecial case where this sheaf is locally free.I will describe some work that gives new relations amongst the Chern classes of sheaves oflogarithmic forms. We see that, in general, they are not uniquely determined by the matroid;however, in some cases one does obtain explicit formulas and a �geometric� explanation ofSolomon and Terao's formula in terms of some elementary intersection theory. This is jointwork with Mathias Schulze.
Loop spaces for manifolds with group actions1.Natalia DobrinskayaVU University Amsterdam, Netherlands.NE.Dobrinskaya@few.vu.nlWe construct combinatorial models for loops on manifolds with group actions in terms ofpiecewise geodesics. In particular case of toric manifolds, these models can be simpli�ed and incertain special cases lead to loop space homology computations.

1This is a joint work with Nigel Ray. 88



Buchstaber Invariant of Simple PolytopesNickolai ErokhovetsMoscow State University, Moscow.erochovetsn@hotmail.comConvex polytopes lie in the focus of a scienti�c study since antiquity. Let us remind thePlatonic solids, the Euler-Descartes formula, the Cauchy's and Alexandrov's theorems aboutunfoldings, the Minkowski's theorem, the Brunn-Minkowski inequality, the g-theorem, and soon. Toric topology gives a new point of view on simple polytopes.Let P n = {x ∈ Rn : Apx + bp > 0} be a simple n-polytope and F = {F1, . . . , Fm} the setof its facets. Then there is a canonical combinatorial construction of a moment-angle manifold
ZP [BPeng] with a canonical action of a torus Tm such that P n is an orbit space. Namely, foreach facet Fi ∈ F denote by T Fi the one-dimensional coordinate subgroup of T F = Tm. Thenassign to every face G the coordinate subtorus TG =

∏
Fi⊃G T

Fi ⊂ T F. For every point q ∈ Plet G(q) be a unique face containing q in the relative interior. Then
ZP = (T F × P n)/∼,where (t1, p) ∼ (t2, q) if and only if p = q and t1t−1

2 ∈ TG(p). We have ZP/Tm = P , and thestabilizer of a point [(t, q)] is TG(q). It turns out that the geometric realization of P gives therealization of ZP as a smooth submanifold in Cm with a trivial normal bundle ([1], see also[BPrus]).Sometimes there is an (m− n)-dimensional subtorus in Tm that acts freely. In this case theorbit space is a smooth 2n-manifold M2n with a standard action of an n-dimensional torus.Such manifolds are called quasitoric. But this is not the general case: there are polytopes thathave no quasitoric manifolds at all.De�nition 1. A Buchstaber number s(P ) is the maximal dimension of a torus subgroup H ∼=
T s, which acts freely.It follows from the de�nition that s(P ) is a combinatorial invariant of simple polytopes. Insome sense, s(P ) is a measure of a symmetry of a moment-angle manifold. In fact, it can bede�ned for any simplicial complex in such a way that s(P ) = s(∂P ∗).The problem stated by Victor M. Buchstaber in 2002 is to �nd a simple combinatorialdescription of the s-number.At present moment the following problems in this �eld are actual: to �nd a simple (orseveral equivalent simple) combinatorial description that gives an EFFECTIVE method tocalculate the s-number in important SPECIAL cases; to �nd a connection between values of
s(K) of di�erent simple polytopes and complexes; to �nd a connection with other combinatorialinvariants.We study the properties of s(P ). It is not di�cult to see, that 1 6 s(P ) 6 m− n.Theorem 5. The s-number satis�es the following properties.1. s(P )=1 if and only if P is a simplex;2. For any k > 2 there exists a simple polytope with m− n = k and s(P ) = 2;3. s(P ) > m− γ + s(∆γ−1

n−1), where γ is a chromatic number of P , and ∆γ−1
n−1 is an (n− 1)-skeleton of a (γ − 1)-dimensional simplex;89



4. If P is obtained from Q by an i-�ip with 2 6 i 6 n− 1, then |s(P )− s(Q)| 6 1;5. s(P ) > [m−n
2

] for a �ag polytope;6. There are two polytopes with equal f -vectors and chromatic numbers, but di�erent s-numbers;7. It is known (see [Gb]) that each simple polytope P n withm = n+3 facets can be representedin terms of a regular (2k − 1)-gon M2k−1 and a surjective map from F = {F1, . . . , Fn+3}to the set of vertices of M2k−1. The facets Fi1 , . . . , Fin intersect is a vertex if and only ifthe triangle formed by the vertices corresponding to the rest three facets contain the centerof M2k−1.Let ai > 1 be the number of the preimages of the i-th vertex of M2k−1. Then for such apolytope Pa1,..., a2k−1
we have: s(P ) = 3 if and only if k 6 4.Here k can be expressed in terms of bigraded Betti numbers

2k − 1 =
∑

j

β−1, 2j(ZPa1,..., a2k−1
) =

∑

j

β−2, 2j(ZPa1,..., a2k−1
).We also study the properties of simple n-polytopes with n + 3 facets. Let us denote ϕi =

ai + · · ·+ ai+k−2, ψj = aj + · · ·+ aj+k−1, where indices are taken modulo 2k − 1.Theorem 6. For the polytope P = Pa1,..., a2k−1
the bigraded cohomology ring C∗, ∗(ZP ) isisomorphic to the free abelian group Z⊕ Z2k−1 ⊕ Z2k−1 ⊕ Z with the generators

1, bideg 1 = (0, 0);
Xi, bidegXi = (−1, 2ϕi), i = 1, . . . , 2k − 1;
Yj, bideg Yj = (−2, 2ψj), j = 1, . . . , 2k − 1;

Z, bidegZ = (−3, 2(n+ 3)).For k > 3
Xi ·Xj = 0 Xi · Yj = δi+k−1, jZ Yi · Yj = 0,and for k = 2

X2
i = 0, XiXi+1 = −Xi+1Xi = Yi, X1X2X3 = Z.In fact, it is easy to see that ZPa1, a2, a3

= S2a1−1 × S2a2−1 × S2a3−1, and according to theresults by Lopez de Medrano [LM] for k > 3 the manifold ZPa1,..., a2k−1
is homeomorphic to

2k−1

sh
i=1

S2ϕi−1 × S2ψi+k−1−2.See also [BM]. Our result describes additionally the bigraded structure in the cohomology ringof the moment-angle manifold ZPa1,..., a2k−1
.
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Cup Products in Generalized Moment Angle Complexes.Samuel GitlerCINVESTAV, Mexico.sgitler@math.cinvestav.mxThis is a report of joint work with A. Bahri, M. Bendersky, and F.R. CohenThe cohomology of a generalized moment angle splits geometrically in terms of smash anglecomplexes. We de�ne a product on the direct sum of the cohomology groups of these smashmoent angle complexes so it becomes a ring which is isomorphic to that of the cohomology ringof the given moment angle complex.
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On cohomology length of branched coverings.Dmitry GugninMoscow State University, Russia.dmitry-gugnin@yandex.ruWe will talk about so called Dold-Smith branched coverings of topological spaces andthe correlation between cohomology (rational and mod p) of the base and the total spaceof a branched covering. The branched coverings that we consider have been de�ned by LarrySmith[1] in 1983 as a natural generalization of unbranched coverings on which extends theclassical notion of a (co)homological transfer. In 1986 Dold[2] gave the full classi�cation of thesebranched coverings in terms of actions of �nite groups on topological spaces. Subsequently thesecoverings were called Dold-Smith branched coverings.Let us give the de�nitions. All topological spaces are assumed to be Hausdor�. By SymnX =
Xn/Sn we denote the n-th symmetric power of a space X . The points of SymnX are preciselythe n-multisets [k1x1, . . . , ksxs], ki ∈ N, xi ∈ X, 1 ≤ i ≤ s, k1 + . . .+ ks = n, xi 6= xj , i 6= j. Let
expnX = {A ⊂ X|1 ≤ ]A ≤ n} be the n-th exponent of X , the space of all �nite nonemptysubsets of X of order not greater than n. There is a natural "forgetting multiplicities" map
〈·〉 : SymnX → expnX, 〈[k1x1, . . . , ksxs]〉 = {x1, . . . , xs}.De�nition 1. Let X and Y be Hausdor� spaces. A continuous map f : X → Y is calledan n-fold Dold-Smith branched covering if there exists a continuous map g : Y → SymnX suchthat f−1(y) = 〈g(y)〉 ∀y ∈ Y .There exists at least three important for topology classes of maps which are Dold-Smithbranched coverings:(i) unbranched n-fold coverings f : X → Y ;(ii) projections π : X → X/G on the orbit spaces of �nite group actions, n = |G|;(iii) �nite-fold classical branched coverings of smooth manifolds f : Mm → Nm, n =
maxy∈Nm{]f−1(y)}.Dold's classi�cation theorem states that for every n-fold branched covering f : X → Y, g :
Y → SymnX , there exists a canonically obtained Hausdor� space W with an action of thesymmetric group Sn such that X = W/Sn−1, Y = W/Sn and f = πSn,Sn−1 : W/Sn−1 → W/Snis a natural orbit projection.Using Dold's result and classical cohomology transfer for �nite group actions one can observethat for any n-fold Dold-Smith branched covering f : X → Y, g : Y → SymnX of "good"spaces (it's su�cient X, Y to be both locally contractible metric spaces or both countable
CW -spaces) the induced homomorphisms f ∗ : H∗(Y ;Q) → H∗(X ;Q) and f ∗ : H∗(Y ;Zp) →
H∗(X ;Zp), p > n, in singular cohomology are monomorphisms. So cohomology of Y is alwaysa subalgebra of cohomology of X . The question that we answer in this talk is how small(�degenerate�) can be the subalgebra H∗(Y ;K) ⊂ H∗(X ;K), K = Q or Zp, p > n, when we�x H∗(X ;K) and the number of sheets n. It turns out that the proper notion of �richness�or �smallness� of an graded algebra is its multiplicative length (= the cohomology length ofthe underlying space). Denote by l(X) the rational cohomology length of a space X , lp(X) �
mod p cohomology length of X .Theorem. Let f : X → Y, g : Y → SymnX be an n-fold branched covering of locallycontractible paracompact spaces such that Y × Xn is also paracompact. Then the followingestimate holds: l(Y ) + 1 ≥ l(X)+1

n
, lp(Y ) + 1 ≥ lp(X)+1

n
, ∀p > n. These estimates are sharp for

n = 2.The proof of the theorem has required a new algebraic notion of so called graded93



Frobenius n-homomorphisms. The theory of (ungraded) Frobenius n-homomorphisms was builtby V.M.Buchstaber and E.G.Rees starting from 1996. The graded Frobenius n-homomorphismsare special linear maps f : A∗ → B∗ of graded associative commutative algebras over a (graded)ground ring R∗ for which holds a special �weak multiplicativity� axiom. 1-homomorphisms arejust algebra homomorphisms. The �weak multiplicativity� axiom for 2-homomorphisms can bewritten in the way f(abc) = −1
2
f(a)f(b)f(c) + 1

2
(f(a)f(bc) + f(b)f(ca) + f(c)f(ab)) (it is thecase when a, b, c ∈ A∗ are of even degree, in the cases of other degrees one needs to put anothersigns in the right side of the formula). It can be proved that the sum f = f1+. . .+fn : A∗ → B∗,where fi : A∗ → B∗, 1 ≤ i ≤ n, are algebra homomorphisms, is an n-homomorphism. So thesum of n algebra homomorphisms inherits some �weak multiplicativity�. This fact applied to thetransfer in cohomology of Dold-Smith branched coverings with additional algebraic techniquewas used to prove the above theorem.References[1] L. Smith, Transfer and rami�ed coverings, Math. Proc. Camb. Phil. Soc. 93 (1983), 485-493.[2] A. Dold, Rami�ed coverings, orbit projections and symmetric powers, Math. Proc. Camb. Phil.Soc. 99 (1986), 65-72.
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Equivariant Schubert calculus of Coxeter group I2(m).Shizuo KajiYamaguchi University, Japan.skaji@yamaguchi-u.ac.jpLet G be a Lie group and T be its maximal torus. The homogeneous spaces G/T isknown to be a smooth variety and called the �ag variety of type G. Its cohomology grouphas a distinguished basis consisting of Schubert classes, which arise from a certain family ofsub-varieties. The ring structure of H∗(G/T ) with respect to this basis reveals interestinginteractions between topology, algebraic geometry, representation theory, and combinatorics,and has been studied under the name of Schubert calculus.One way to study H∗(G/T ) is to identify it with the coinvariant ring of the Weyl group Wof G, i.e. the polynomial ring divided by the ideal generated by the invariant polynomials of
W . From this point of view, the problem can be rephrased purely in terms of W and extendedto any Coxeter group including non-crystallographic ones. In fact, H. Hiller pursued this wayin his book �The geometry of Coxeter groups� and gave a characterization of a �Schubert class�in the coinvariant ring.On the other hand, G/T has the canonical action of T and we can consider the equivarianttopology with respect to this action. A similar story goes for the equivariant cohomology
H∗
T (G/T ) and we can consider equivariant Schubert calculus for Coxeter groups. This timewe consider a double version of a coinvariant ring. Along this line, the �rst di�cultyis how to �nd polynomials in it representing Schubert classes. By several people, suchpolynomial representatives have been found for type An, Bn, Cn, Dn. Here we give polynomialrepresentatives for the non-crystallographic group of type I2(m). The main ingredients is thelocalization technique, a powerful machinery of equivariant topology.
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Estimates of Z2-index of the grassmanian Gn
2n
1.Roman KarasevMoscow Institute of Physics and Technology, Russia.r_n_karasev@mail.ruThe topology of the real Grassmannians has many applications in the discrete and convexgeometry. For example, some topological facts were applied to obtain some existence theoremsfor �at transversals (a�ne �ats intersecting all members of a given family of sets) in the worksof R. �Zivaljevi�c, S.T. Vre�cica, V.L. Dol'nikov.In this talk we consider the Grassmannian Gn

2n of n-dimensional subspaces of R2n. Thisspace has a natural Z2-action (involution) by taking the orthogonal complement of thesubspace. The well-known invariant of Z2-spaces is homological index, introduced and studiedby Krasnosel'skii, Schwarz, Conner and Floyd. This invariant proved to be very useful inapplications to combinatorics and convex geometry.The following theorem gives an estimate for the index of the Grassmannian.Theorem. If n = 2l(2m+ 1), then
2l+1 − 1 ≤ indGn

2n ≤ 2n− 1,for n = 2m+ 1 the index equals 1, for n = 2(2m+ 1) the index equals 3.The lower and the upper bounds coincide for n = 2l, odd n, n = 2(2m+ 1). In other casesthere is still some gap between them. This result easily produces some geometric consequences.Here is one example.Corollary. Let n = 2l(2m + 1), k = 2l+1 − 1. Consider some k continuous (in the Hausdor�metric) O(n)-invariant functions α1, . . . , αk on (convex) compacts in Rn. Then for any (convex)compact K ⊆ R2n there exist a pair of orthogonal n-dimensional subspaces L and M , such thatfor their respective orthogonal projections πL and πM we have
∀i = 1, . . . , k αi(πL(K)) = αi(πM(K)).In this corollary αi can be the Steiner measures (volume, the boundary measure, etc.), forexample.

1This research is supported by the Dynasty Foundation, the President's of Russian Federation grant MK-113.2010.1, the Russian Foundation for Basic Research grants 10-01-00096 and 10-01-0013996



Moment Polyhedra, Semigroup of Representations andKazarnovskii's Theorem.Askold KhovanskiiIndependent University of Moscow, Russia and University of Toronto, Canada.askold@math.toronto.eduTwo representations of a reductive group G are spectrally equivalent if the same irreduciblerepresentations appear in both of them. The semigroup S of �nite-dimensional representationsof G with tensor product and up to spectral equivalence is a rather complicated object. TheGrothendieck group of S contains signi�cant information about S and is simpler to describe.In the talk I will give its description in terms of moment polyhedra of representations.As a corollary, one can obtain the Kazarnovskii theorem ([1]) on the number of solutionsin G of a system f1 = · · · = fm = 0 where m = dim(G) and each fi is a generic function inthe space of matrix elements of a representation πi of G. Given a representation π of a classicalgroup G one de�nes its Newton polyhedron ∆̃(π) �bred over the moment polyhedron ∆(π) withGelfand-Cetlin polyhedra as �bres. Then, for classical groups, the Kazarnovskii theorem can beformulated exactly as the famous Bernstein-Kushnirenko theorem from the Newton polyhedratheory: the number of solutions of the system under discussion is equal to the mixed volume ofthe Newton polyhedra ∆̃(πi) multiplied by m!. The proof is based on the intersection theory for�nite-dimensional subspaces of rational functions on algebraic varieties (see [2]-[4]).My talk is based on a joint work with Kiumars Kaveh ([5]).REFERENCES1. Kazarnovskii, B. Newton polyhedra and the Bezout formula for matrix-valued functionsof �nite-dimensional representations. (Russian). Funktsional. Anal. i Prilozhen. 21 (1987), no.4, 73-74. [English translation: Functional Analysis and its applications, v. 21, no. 4, 319-321(1987)].2. Kaveh, K.; Khovanskii, A. G. Mixed volume and an extension of intersection theory ofdivisors. Preprint: arXiv:0812.0433. To appear in Moscow Mathematical Journal. 3. Kaveh,K.; Khovanskii, A. G. Newton-Okounkov convex bodies, semigroups of integral points, gradedalgebras and intersection theory. Preprint: arXiv:0904.3350v1. 4. Kaveh, K.; Khovanskii, A. G.Convex bodies associated to actions of reductive groups. Preprint arXiv:1001.4830v1.5. Kaveh, K.; Khovanskii, A. G. Moment polytopes, semigroup of representations andKazarnovskii's theorem. To appear in Journal of Fixed Point Theory and Applications. V. VII,Smale Festschrift). arXiv:1003.0245v2 (1 March 2010).Need a LATEX-�le.
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On cohomological rigidities of toric hyperK�ahler manifolds.Shintar�o Kuroki1KAIST, Korea.kuroki@kaist.ac.krIn [6], Masuda proved the following theorem:Theorem 1 (Masuda). Two toric manifolds (M,T ) and (M ′, T ) are weakly equivariantlyisomorphic as varieties if and only if H∗
T (M ;Z) and H∗

T (M
′;Z) are weakly H∗(BT )-algebraisomorphic.Motivated by this Masuda's theorem, Masuda and Suh proposed the following problem in[8]:Problem 1 (Cohomological rigidity problem). Let M and M ′ be (quasi)toric manifolds. Arethey homeomorphic (or di�eomorphic) if H∗(M) ' H∗(M ′)?This problem is still open, but this can be asked for the class of other manifolds. For example,this problem can be asked for more general torus manifolds or small covers which are the realanalogue of quasitoric manifolds; however, the answers for both classes are negative (see [3, 7]).In this talk, we study the cohomological rigidity problem for toric hyperK�ahler manifolds.Toric hyperK�ahler manifolds, introduced by Bielawski and Dancer in [2], are de�ned by thehyperK�ahler quotient of torus actions on quaternionic spaces. This manifold can be regardedas the hyperK�ahler analogue of the symplectic toric manifolds.In this talk, we show the following theorem.Theorem 2 ([3]). Let (Mα, T, µα̂) and (M ′

α′ , T, µ′
α̂′) be triples of toric hyperK�ahler manifoldswith torus actions and their hyperK�ahler moment maps. Then, (Mα, T, µα̂) and (M ′

α′ , T, µ′
α̂′) areweakly hyperhamiltonian isomorphic if and only if there is a weak H∗(BT )-algebra isomorphism

f : H∗
T (Mα;Z)→ H∗

T (M
′
α′ ;Z) such that f(α̂) = α̂′.Here, we call two triples (Mα, T, µα̂) and (M ′

α′ , T, µ′
α̂′) are weakly hyperhamiltonianisomorphic if there is a di�eomorphism f :M →M ′ such that

• f is weakly equivariant map, i.e., there is an isomorphism ϕ : T → T such that f(xt) =
f(x)ϕ(t), where x ∈ M and t ∈ T ;
• f preserves (weak) hyperhamiltonian structures, i.e., f preserves hyperK�ahler structureson M and M ′ and the following diagram is commute:

M
µα̂→ t∗ ⊕ t∗C

f ↓ ↓ ϕ∗

M ′ µ′
α̂′→ t∗ ⊕ t∗C,where t∗ is the dual of Lie algebra of T , t∗C is its complexi�cation, and ϕ∗ : t∗⊕t∗C → t∗⊕t∗Cis the induced isomorphism from ϕ.Moreover, we show the following theorem.1The author was supported in part by Basic Science Research Program through the NRF of Korea fundedby the Ministry of Education, Science and Technology (2010-0001651) and the Fujyukai Foundation.98



Theorem 3 ([5]). Let M and M ′ be toric hyperK�ahler manifolds. Then, M and M ′ aredi�eomorphic if and only if dimM = dimM ′ and H∗(M) ' H∗(M ′).Theorem 2 can be regarded as the hyperK�ahler version of the Masuda's theorem, andTheorem 3 gives the answer of the cohomological rigidity problem for toric hyperK�ahlermanifolds. That is, Theorem 3 says that the cohomological rigidity does not hold for the setof all toric hyperK�ahler manifolds, but holds for the set of 4n-dimensional toric hyperK�ahlermanifolds (if n is �xed).Due to the Bielawski's results in [1], as a corollary of Theorem 3, we have the followingresult:Corollary 1. Let Mn be the set of 4n-dimensional, simply connected, complete, hyperK�ahlermanifolds with e�ective n-dimensional hyperhamiltonian torus actions. Then Mn satis�escohomological rigidity.References[1] R. Bielawski, Complete hyperk�ahler 4n-manifolds with a local tri-Hamiltonian Rn-action, Math.Ann., 314 (1999), 505�528.[2] R. Bielawski, A. Dancer, The geometry and topology of toric hyperK�aler, Comm. Anal. Geom., 8(2000), 727�759.[3] S. Choi, S. Kuroki, Topological classi�cation of torus manifolds which have codimension oneextended actions, arXiv:0906.1335; OCAMI preprint series 09-9 (2009).[4] S. Kuroki, Equivariant cohomological rigidity of toric hyperK�ahler manifolds, preprint.[5] S. Kuroki, Cohomological rigidity of toric hyperK�ahler manifolds, preprint.[6] M. Masuda, Equivariant cohomology distinguishes toric manifolds, Adv. Math., 218 (2008), 2005�2012.[7] M. Masuda, Cohomological non-rigidity of generalized real Bott manifolds of height 2,arXiv:0809.2215; OCAMI preprint series 08-10 (2008).[8] M. Masuda, D.Y. Suh, Classi�cation problems of toric manifolds via topology, Proc. of ToricTopology, Contemp. Math., 460 (2008), 273-286.
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Almost complex quasitoric manifoldsAndrey KustarevMoscow State University, Moscow.kustarev@gmail.comWe show that existence and properties of invariant almost complex structures on quasitoricmanifolds are ruled by combinatorial invariants corresponding to these manifolds. This allowsto obtain an upper bound for number of almost complex structures on a quasitoric manifold
M2n: it can't exceed 2n.
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Finite group actions on aspherical spaces.Lev LokutsievskiyMoscow State University, Russia.lion@mech.math.msu.suA new method of studying �nite group actions on aspherical spaces is proposed. Someinteresting results will be shown:1. Complete homotopy classi�cation of �nite group free actions on aspherical spaces:Theorem: Let G be a �nite group. Then the set S of all free actions of G (up to homotopyconjugation) on an Eilenberg-MacLane space K(π, 1) is in one-to-one correspondencewith a set of all extensions 1→ π → S → G → 1 of G by π 1. The classi�cation of suchextensions is determined by group cohomologies H∗(G) (see for example [1]).There are also some results on the classi�cation of non-free actions on K(π, 1).2. A connection between a structure of a subgroup lattice of a �nite group G and groupcohomologies H∗(G) is found. The connection is expressed in terms of Hochschild-Serrespectral sequences. This result is obtained by using theory of classifying spaces of smallcategories that was introduced by Segal and Quillen (see [2, 3]).References[1] K.S. Brown, �Cohomology of groups�, Springer-Vergal, New York, Heidelberg, Berlin, 1982.[2] D. Quillen, �Higher algebraic K-theory�, Proceedings of the International Congress ofMathematics, Vancouver (1974), p. 77-139.[3] G. Segal, �Classifying spaces and spectral sequences�, Publications mathematiques de l'I.H.E.S,tome 34 (1968), p. 105-112.

1Some natural conditions (like existance of CW-complex structure on K(π, 1)) are used.101



Intersection of quadrics, moment-angle manifolds andconnected sums.Santiago L�opez de MedranoUNAM, Mexico.santiago@matem.unam.mxIntersections of quadrics in Rm given by equations of the form
Z = {

n

Σ
i=1

Λix
2
i = 0,

n

Σ
i=1

x2i = 1}including their important complex versions (which are essentially the same as those called nowmoment-angle manifolds):
ZC = {

n

Σ
i=1

Λi |zi|2 = 0,
n

Σ
i=1
|zi|2 = 1}(where the coe�cients Λi ∈ Rk, i = 1, . . . , m satisfy a generic property) have been studiedfrom the point of view of Geometric Topology since the 80's when they appeared (and keepreappearing since then) in problems of Singularities of Mappings, Dynamical Systems andAlgebraic Geometry and are related to many other geometric theories.The topology of Z for the case k = 2 was studied in [LdM1], [LdM2] where it was shownthat they are in most cases di�eomorphic to a triple product of spheres or to the connectedsum of sphere products. The proof relied heavily on a normal form for them and involved manycomputations. A geometric description of the group actions on them and of their polytopequotients as well as that of the homology of those manifolds was equally valid for the intersectionof any number of such quadrics, but the obstacle to extending the main result for more thantwo turned out to be the hopeless-looking problem of �nding their normal forms, close to thatof classifying all simple polytopes.Their study continued in other directions, especially to the projectivizations (known nowas LV-M manifolds) of the manifolds ZC, which produced many new examples of non-algebraiccomplex manifolds �bering over toric varieties (see [Me-V] for a review). Following these lines,in [B-M] a deep study of LV-M manifolds included important advances on the topology of themanifolds ZC for k > 2. The main questions addressed in this respect were the following:1) Whether they can always be built up from spheres by repeatedly taking products orconnected sums: they produced new examples for any k which are so, but also showed howto construct many cases which are not. Many interesting questions arose, including a speci�cconjecture.2) The question of the transition between di�erent topological types when the genericcondition is broken at some point (wall-crossing).3) A product rule of their cohomology ring (in the spirit of the description of the homologyof Z given in [LdM2]) and its applications to question 1).Meanwhile, and independently, in [D-J] essentially the same manifolds were constructed ina more abstract way, where the main objective was to study the algebraic topology of someimportant quotients of them called initially toric manifolds and now quasitoric manifolds. Thisarticle originated an important development through the work of many authors, and there is avast and deep literature along those lines for which the reader is referred to [B-P2]. Yet for along time no interchange occurred between the two lines of research involving the same objects,until a small connection appeared in the �nal version of [B-M].102



In particular, it turned out that examples relevant to question 1) above were known to theseauthors (see, for example, [Ba2]), and in [Ba1] there is a product rule for the cohomology ring,similar but dual to that of [B-M] mentioned in 3) above. Those examples were independent andmore or less simultaneous to those of [B-M] and meant to answer di�erent questions, but bothproduct rules are consequences of an earlier description of the cohomology ring by Buchstaberand Panov, the �rst version of which was announced in 1998 ([B-P1]).One recent expression of this line of research is the article [B-B-C-G] where a far-reachinggeneralization is made and a general splitting formula is derived. This understanding wasfundamental in the process of tracing a way for the case of k > 2 quadrics.The results obtained (in collaboration with Samuel Gitler) follow the three lines describedabove, but including now all the manifolds Z and not only the moment-angle manifolds:1) The identi�cation of very general families of them which are di�eomorphic to connectedsums of sphere products, including those conjectured in [B-M].2) The explicit topological description of some of the transitions.3) The computation of the cohomology ring of an important example that shows that theproduct rules have to be modi�ed in the general version.Nevertheless, the �nal proofs of these results do not depend logically on [LdM2] or [B-B-C-G]. Several new questions and conjectures have arisen.[B-B-C-G], A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, The polyhedral productfunctor: a method of computation for moment-angle complexes, arrangements and related spaces,arXiv:0711.4689v2 [math.AT] 8 Dec 2008.[Ba1] Ilia V. Baskakov, Cohomology of K-powers of spaces and the combinatorics of simplicialsubdivisions. Russian Math. Surveys 57(5):989-990, 2002.[Ba2] I.V. Baskakov, Massey triple products in the cohomology of moment-angle complexes.Russian Math. Surveys 58 (2003), no.5, 1039-1041.[B-M], F. Bosio and L. Meersseman, Real quadrics in Cn, complex manifolds and convexpolytopes. Acta Math. 197 (2006), no. 1, 53-127.[B-P1] V.M.Bukhshtaber and T.E.Panov. Algebraic topology of manifolds de�ned by simplepolytopes. Russian Math. Surveys 53 (1998), no.3, 623-625.[B-P2], V.M. Buchstaber and T.E. Panov, Torus actions and their applications in Topology andCombinatorics, University Lecture Seriers, AMS (2002).[D-J], M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions,Duke Math. Journal 62 (1991), 417-451.[LdM1], S. L�opez de Medrano, The space of Siegel leaves of a holomorphic vector �eld, inHolomorphic Dynamics (Mexico, 1986), Lecture Notes in Math., 1345, pp. 233-245. Springer,Berlin, 1988.[LdM2], S. L�opez de Medrano, Topology of the intersection of quadrics in Rn, in AlgebraicTopology (Arcata Ca., 1986), Lecture Notes in Math., 1370, pp. 280-292. Springer, Berlin, 1988.[Me-V], L. Meersseman and A. Verjovsky, Sur les vari�et�es LV-M, Contemporary Mathematics475, AMS, 2008, 111-134.
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A di�erential operator and tom Dieck-Kosniowiski-Stonglocalization theorem.Zhi LuFudan University, China.zlu@fudan.edu.cnAbstract. We de�ne a di�erential operator on the cohomology of the classifying space of2-torus group, and study the relationship between this operator and tom Dieck-Kosniowiski-Stong localization theorem. As a further application, we determine the group structure ofequivariant cobordism classes of all 4-dimensional 2-torus manifolds, and show that eachequivariant cobordism class in all 4-dimensional 2-torus manifolds contains a small cover asits representative.

104



Quasimorphisms, random walks, and knots.Andrei MalyutinSaint-Petersburg branch of the Steklov Mathematical Institute, Russia.malyutin@pdmi.ras.ruWe study the probabilistic behaviour of quasimorphisms of groups with respect to randomwalks on groups. Our results have corollaries for braid groups and knots (see Theorem 1).De�nition: completely transient subsets. Let G be a countable (discrete) group, let Sbe a subset of G, and let µ be a probability measure on G. We say that S is uniformly transientwith respect to µ if there exists a constant C := C(µ) such that for any g, h ∈ G we have
+∞∑

k=0

µ∗k(gSh) < C,where µ∗k is the k-fold convolution of µ. (In particular, if S is a uniformly µ-transient set, then
µ∗k(S) tends to 0 as k tends to ∞, so S is clearly a �small� set in a certain sense.)We say that S is completely transient if it is uniformly transient with respect to allnondegenerate probability measures on G. (A measure on G is said to be nondegenerate ifits support generates G as a semigroup.)Theorem 1. In the Artin braid group Bn with n ≥ 3 the following subsets are completelytransient:1. The set of all non-pseudo-Anosov braids (i. e., the set of all braids of periodic or reducibletype in terms of the Nielsen�Thurston classi�cation).2. The set Nk, where N is the set of all non-pseudo-Anosov braids (for any k ∈ N).3. The set of those braids that represent1 non-hyperbolic knots or links. (In particular, thesets of those braids that represent trivial, non-prime, composite, split, satellite, torusknots or links are completely transient.)4. The set of those braids that represent knots of genus ≤ k (for any k ∈ N).5. The set of non-minimal2 braids.

1We consider the classical representation of (oriented) knots and links by braids in the sense ofJ.W.Alexander, A.A. Markov.2A braid β ∈ Bn is said to be minimal if the link represented by β is not represented by braids from Bn−1.105



Signature of manifolds with proper action of a discretegroup and the Hirzebruch type formula.Alexander MishchenkoMoscow State University, Russia.asmish@mech.math.msu.suV.A.Roklin was the �rst ([1]) who has written the formula for the signature of 4-dimensionalmanifolds in the terms of the Pontryagin classes. For manifolds of arbitrary dimension thisformula is known as the Hirzebruch formula. The formula was generalized during throughoutmore than 50 years in various directions.Here we consider a case of manifolds with proper action of a discrete group G, that is iffor any point its isotropy subgroup is �nite and the quotient space is compact. It is a naturalgeneralization of the category of non simply connected compact manifolds where a variety ofgeometric and topological constructions can be extended.In particular on the category of manifolds with proper action one can canonically constructa bordism relation. For that category in the paper by P.Baum, A.Connes and N.Higson ([2])a universal space was constructed to which any manifold with proper action of discrete groupcan be mapped equivariantly up to equivariant homotopy. Due to papers by S.Illman ([3]) andT.Korppi ([4]) we know that any smooth proper action is simplicial with respect to a simplicialstructure on the manifold M . It allows to extend for proper actions many combinatorialconstructions and to construct correspondent invariants.Simplicial structure on the manifold with proper action of a discrete group G allowsto construct so called algebraic Poincare complex (APC). In particular the APC hasnoncommutative (symmetric) signature as an element of Hermitian K�theory of the group G,sign (M) ∈ K∗(Q[G]). sign (M) is both homotopy invariant of the manifoldM and invariantof bordisms.Hence the problem of search of the Hirzebruch type formula for the signature sign (M)arises in the terms of the feasible characteristic classes of the quotient space M/G. The troubleis that the quotient space is manifold with singularities. But one can show that the space M/Gis the Poincare space for rational homology and the Pontryagin classes has representations asinvariant di�erential forms relative to proper action. It allows to express usual signature of thequotient space M/G by means of the Hirzebruch type formula.For noncommutative signature sign (M) ∈ K∗(Q[G]) one need to restore a bundle onthe quotient space M/G with structural group GL(n, C∗[G]), the analog of canonical bundle
ξC∗[G] ∈ KC∗[G](BG), that is de�ned by a natural representation of the group G into the group
C∗-algebra C∗[G].To clarify the bordism concept for proper action one can apply so called the Conner-Floydconstruction for �xed points. Calculation of equivariant bordisms for manifolds with properaction is reduced to description of the classifying space for equivariant vector bundles for thecase of quasi-free action of the group G on the base ([5]).References[1] V.A.Rokhlin, New results in the theory of 4-dimensioanl manifolds,(in Russian) Dokl. ANSSSR,84,(1952), p. 221�224. 106



[2] P.Baum, A.Connes, and N.Higson. Classifying space for proper actions and k-theory of group
c∗-algebras. Contemp. Math., 167:241�291, 1994.[3] S. Illman. Existence and uniqueness of equivariant triangulations of smooth proper gmanifoldswith some applications to equivariant whitehead torsion. J. Reine Angew. Math., 524:129�183,2000.[4] T. Korppi. Equivariant triangulations of di�erentiable and real-analytic manifolds witha properly discontinuous action. In Annales Academiæ acientiarum fennicæ matematicadissertationes,, number 141. Suomalainen Tiedeakatemia, XVC05/4352. b20453085., Helsinki,2005.[5] A. S. Mishchenko and Quitzeh Morales Melendes. Description of the vector G-bundles over G-spaces with quasi-free proper action of discrete group G. arXiv:0901.3308v1[math.KT], page 15,2009.

Topological TransversalsLuis MontejanoNational University of Mexico, Mexico.luis@matem.unam.mxWe say that F has a topological ρ-transversal of index (m, k), ρ < m, 0 < k 6 d−m, if thereare, homologically, as many transversal m-planes to F as m-planes through a �xed ρ-plane in
Rm+k.Clearly, if F has a ρ-transversal plane, then F has a topological ρ-transversal of index (m, k),for ρ < m and k 6 d − m. The converse is not true. It is easy to give examples of familieswith a topological ρ-transversal but without a ρ-transversal plane. We conjecture that for afamily F of k + ρ + 1 compact, convex sets in euclidean d-space Rd, there is a ρ-transversalplane if and only if there is a topological ρ-transversal of index (m, k). The purpose of thispaper is to prove some importante cases of this conjecture and to use them, together with theLusternik-Schnirelmann category and several versions of the colorful Helly Theorem of Lovasz,to obtain geometric results that, until know, can not be obtained by us only with geometrictools.A system Ω of λ-planes in Rd is a continuous selection of a unique λ-plane in every directionof Rd. More precisely, it is a continuous function Ω : G(d, λ) −→ M(d, λ) with the propertythat Ω(H) is parallel to H , for every H ∈ G(d, λ).If γd,λ : Ed,λ −→ G(d, λ) is the standardvector bundle of all λ-planes through the origin in Rd, then a system of λ-planes is just a section
s : G(d, d− λ) −→ Ed,d−λ for the vector bundle γd,d−λ.We use the notions of topological transversal and of system Ω of λ-planes in Rd to obtaingeometric transversal results.
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On the isometries of foliated manifolds1.Abdigappar NarmanovNational University of Uzbekistan, Uzbekistan.narmanov@yandex.ruAnvarjon SharipovNational University of Uzbekistan, Uzbekistan.asharipov@inbox.ruLet M,N be n - dimensional smooth manifolds on which there are given k− dimensionalsmooth foliations F1, F2 respectively (where 0 < k < n).If for the some Cr− di�eomorphism f :M → N the image f(Lα) of any leaf Lα of foliation
F1 is a leaf of foliation F2, we say that pairs (M,F1) and (N,F2) C

r− di�eomorph. In this casethe mapping f is called Cr− di�eomorphism, preserving foliation and is written as
f : (M,F1)→ (N,F2).In the case M = N , F1 = F2 f is said di�eomorphism of foliated manifold (M,F ).Di�eomorphisms, preserving foliation, are investigated in [1], [2].De�nition.[3] Di�eomor�sm ϕ : M → M a class Cr(r > 0), preserving foliation, is calledan foliation isometry F (an isometry of foliated manifold (M,F )) if it is an isometry on eachleaf foliation F , i.e. for each leaf Lα foliation ϕ : Lα → ϕ(Lα) is an isometry.Papers [4], [5] are devoted to isometric mappings of foliations. In these papers it isinvestigated question under what conditions any isometry of the foliation is an isometry ofmanifold and it is proved the existence of di�eomor�sm of foliated manifold on itself which isan isometry of foliation, but it is not an isometry of manifold. It is constructed the example ofdi�eomor�sm of three - dimensional sphere which is the isometry of Hopf �bration but is notan isometry of three - dimensional sphere.LetM be a n- dimensional smooth connected Riemannian manifold with Riemannian metric

g, F -smooth k− dimensional foliation on M (In this paper manifolds and foliations havesmoothness C∞). We denote through L(p)- a leaf of foliation F passing through point p, TpF−tangent space to the leaf L(p) at p andHpF− it's orthogonal complement of TpF in TpM, p ∈M .We get two subbundles (smooth distributions) TF = {TpF : p ∈ M}, HF = {HpF : p ∈M}of tangent bundle TM of manifold M , and as the result tangent bundle TM of manifold
M decomposing in the sum of two orthogonal bundles, i.e. TM = TF ⊕ HF. Restrictionof Riemannian metric g on TpF for all p induces Riemannian metric on the leaves. InducedRiemannian metric de�nes distance function on every leaf. Further everywhere in this paperunder the distance on a leaf is understood this distance. This distance on a leaf di�erent fromdistance induced by the distance on M.Let's denote as Gr

F (M)− the set of all Cr isometries of foliated manifold (M,F ), where
r > 0. Following remarks show that notion of isometry of foliated manifold is correctly de�ned.Remark 1. If r > 1, for each element ϕ ∈ Gr

F (M) the di�erential dϕ preserves the lengthof each tangent vector ν ∈ TpF , i.e. holds | dϕp(ν) |=| ν | at any p ∈M .Remark 2. If r = 0 each element ϕ from Gr
F (M) is homeomorphism of manifold M .Riemannian metric of the manifoldM induces Riemannian metric on each leaf Lα which de�nesdistance on it. In this case ϕ is an isometry between metric spaces Lα and ϕ(Lα). Then accordingto the known theorem, ϕ is a di�eomorphism of Lα on ϕ(Lα) for each leaf Lα and it's di�erential1Research supported by grant of the Ministry of higher and secondary specialized education OT-F1-096.108



preserves the length of each tangent vector ν ∈ TpF , i. e. holds | dϕp(ν) |=| ν | at any p ∈ M[5, the page 74]. But as shown in the simple example, from di�erentiability of mapping on eachleaf does not follow it's di�erentiability on all manifold M .The set Diff r(M) of all di�eomorphisms of manifold M onto itself is the group related tocomposition and inverse mapping. The set Gr
F (M) is a subgroup of group Diff r(M).The purpose of our paper is to study the group Gr

F (M) with some topology on set Gr
F (M)which has been introduced in the paper [6], depending on the foliation F , such that it coincideswith compact open topology when F is n- dimensional foliation. If codimension of foliation Fis equal to n , convergence in our topology coincides with pointwise convergence.Let {Kλ} be a family of all compact sets where each Kλ is a subset of some leaf of foliation

F and let {Uβ}− family of all open sets on M . We consider for each pair Kλ and Uβ set ofall mappings f ∈ Gr
F (M), for which f(Kλ) ⊂ Uβ. This set of mappings we denote through

[Kλ, Uβ] = {f :M → M |f(Kλ) ⊂ Uβ}.It isn't di�cult to show that every possible �nite intersections of sets of the form [Kλ, Uβ]forms a base for some topology. This topology we call foliated compact open topology or inbrief F− compact open topology.Proposition. The set Gr
F (M) with F− compact open topology is Hausdor� space.The following theorem shows some property of group Gr

F (M)− with F− compact opentopology.Theorem 1. Let M- complete smooth n dimensional manifold with smooth k dimensionalfoliation F , fm ∈ Gr
F (M), r > 0, m = 1, 2, 3, .... Suppose, that for each leaf Lα there existsa point oα ∈ Lα such that the sequence fm(oα) is convergent. Then there exists a subsequence

fml
of the sequence fm which converges in F− compact open topology.Theorem 2. Let M− smooth complete Riemannian manifold of dimension n with smoothfoliation F of dimension k, where 0 < k < n. Then1) Each leaf with induced Riemannian metric is complete Riemannian manifold.2) Let γm : R1 → Lm - sequence of geodesics (of determined by induced Riemannian metrics)on leaves Lm. If γm(s0)→ p at m→∞ for the some s0 ∈ R1, then there exists subsequence γmlof sequence γm which pointwise converges to some geodesic γ : R1 → L(p) of leaf L(p), passingthrough the point p at s = s0.References[1] I.Tamura, Topology of foliations, Mir, Moscow, 1979, (Russian).[2] S. Kh. Aranson, Topology of vector �elds, foliation with singularities and homeomorphism withinvariant foliation on the closed surfaces, Trudi Matematicheskogo Instituta RAN 193 1992, 15-21,(Russian).[3] A. Ya. Narmanov, A. S. Sharipov, On the group of foliation isometries. Methods of functionalanalysis and topology v. 15, n. 2, 2009, 195-200, (Enlish).[4] A.Narmanov, D.Skorobogatov, Isometric mappings of foliations, Dokladi Academy Nauk Republicof Uzbekistan 4, 2004, 12-16, (Russian).[5] D.Skorobogatov, On isometries of codimension one foliations, The Uzbek matematical journal 4,2000, 55-62, (Russian). 109



Links of graphs.Vladimir NezhinskijHerzen State Pedagodgical University of Russia, St.-Petersburg.nezhin@pdmi.ras.ruThe talk will be devoted to a review of the today's states of the problems of the homotopyand isotopy classi�cations of links of �nite graphs in the three-dimensional sphere.
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Constructions of 3-dimensional small covers.Yasuzo NishimuraUniversity of Fukui, Japan.nyasuzo@hkg.odn.ne.jpSmall covers were introduced by Davis and Januszkiewicz [1] as n-dimensional closedmanifolds Mn with a locally standard (Z2)
n-action such that its orbit space is a simple convexpolytope. In this talk we are interested in constructions of 3-dimensional small covers M3 byusing operations called a connected sum ] and a surgery \.In [2] Izmestiev studied a special class of 3-dimensional small covers which are called linearmodels. He proved that each linear model can be constructed from the 3-dimensinal torus T 3by using three operations ], \ and \−1. In [4] L�u and Yu considered a construction of general

3-dimensional small covers. They introduced new operations ]e, ]eve, ]∆ and ]Ci and showed thefollowing theorem.Theorem (1) (L�u and Yu). Each small cover M3 can be constructed from RP 3 and S1×RP 2by using seven operations ], \−1, ]e, ]eve, ]∆, ]C4 and ]C5 .In [3] Kuroki pointed out that the operations ]e and ]eve are obtained as compositions of ]and \. In this talk we improve the above theorem as follows.Theorem (2). (1) Each small cover M3 can be constructed from T 3, RP 3 and S1×RP 2 withtwo di�erent (Z2)
3-actions by using two operations ] and \.(2) Each small cover M3 can be constructed from RP 3 and S1×RP 2 with two di�erent (Z2)

3-actions by using four operations ], ]e, \−1 and ]C4 .References[1] M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math.J. 61 (1991), 417�451.[2] I. V. Izmestiev, Three-dimensional manifolds de�ned by coloring a simple polytope, Math. Note69 (2001), 340�346.[3] S. Kuroki, Operations on three dimensional small covers, to appear in Chinese Ann Ser. B.[4] Z. L�u and L. Yu, Topological types of 3-dimensional small covers, to appear in Forum Math.,arXiv:0710.4496.
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Polynomially Bounded Cohomology and the StrongNovikov Conjecture.Crichton L. OgleOhio State University, USA.ogle@math.ohio-state.eduIn 1988, Connes and Moscovici proved the following:Theorem - [CM] Suppose a countable discrete group π satis�esCondition PC Every rational cohomology class of π is represented by a cocycle of polynomialgrowth.Condition RD The group π is RD (rapid decay).Then the assembly map for the topological K-groups of the reduced C∗-algebra C∗
r (π) isrationally injective.The condition PC is easily expressed in terms of the standard representation of groupcocycles. The second condition is more technical, dealing with the existence of a certain type ofsubalgebra of C∗

r (π). It is also apparently more restrictive, since the known examples of groupssatisfying condition RD also satisfy condition PC.We show that Condition RD above can be removed without a�ecting the conclusion of thetheorem. First, some terminology. Let (π, L) be a discrete group equipped with word-lengthfunction L, and let PH∗(π) = PH∗(π;C) denote the polynomially bounded cohomology of
(π, L) with coe�cients in the trivial π-module C. There is a comparison map

Ψ = Ψ∗
P : PH∗(π)→ H∗(π) (9)whose image consists of those classes which can be represented by a group cocycle which ispolynomially bounded with respect to the word-length function L on π and the standard normon C. Let

Aπ : ⊕
m≥0

H∗−2m(π;Q)→ Kt
∗(C

∗
r (π))⊗Qdenote the assembly map going from the (rationalized) connective K-homology groups of Bπto the (rationalized) topological K-groups of C∗

r (π)).Theorem A For each Hn(π) 3 [c] ∈ im(Ψ), there is a map ϕ[c] : K
t
∗(C

∗
r (π))⊗ Q→ C forwhich

ϕ[c](Aπ(xn, xn−2, xn−4, . . . )) =< c, xn >∈ C (10)Observing that the construction of ϕ[c] arises via the extension of a cyclic group cocycleoriginally de�ned over the complex group algebra, the Index Theorem of Connes-Moscovici(following that of Mishchenko-Fomenko) allows us to reformulate the above result asTheorem A′ Let M be a closed, compact, oriented n-dimensonal manifold, L(M) its totalHirzebruch L-class, [M ] its fundamental homology class, and ι : M → Bπ1(M) the classifyingmap for the fundamental group of M . Then the higher signatures
Signc(M) := 〈L(M)ι∗(c), [M ]〉 ∈ Q112



are invariants of the orinted homotopy type of M whenever [c] ∈ H∗(π;Q) is represented by acocycle whose growth - with respect to a word-length function on π and the standard norm on
Q - is at most polynomial.It is an easy to show using Bott periodicity that if the assembly map Aπ is injective, so isthe full (rational) assembly map

Ãπ : ⊕
m∈Z

H∗−2m(π;Q)→ Kt
∗(C

∗
r (π))⊗Q (11)Consequently,Corollary B If every rational homology class of π pairs non-trivially with a cocycle ofpolynomial growth, then the full assembly map Ãπ is injective.To describe a class of groups for which Corollary B applies, we recall that π is saidto be P-isocohomological (or P-IC) if the comparison map in (9) is an isomorphism, andstrongly P-isocohomological (P-SIC) if the comparison map

Ψ∗
P(π;V ) : PH∗(π;V )→ H∗(π;V ) (12)is an isomorphism for all bornologicalH1,∞

L (π)-modules V , where H1,∞
L (π) is the `1-rapid decayalgebra associated to π. The groups PH∗(π;V ) and thus the properties P-IC and P-SIC are,in general, sensitive to the choice of word-length function on π, and are more precisely functorsof (π, L) (unless otherwise indicated, L is assumed to be the stand word-length functon on π).Combined with the corollary above, we haveTheorem B SNC(π) holds true whenever π is P-IC. In particular, it holds for all P-SICgroups.By results of the author and Ji-Ramsey, the class of P-SIC groups is an easily-describablesubset of the class of HF∞ groups (those where Bπ ' X a complex with �nitely many cells ineach dimension). The following theorem represents joint work with R. Ji and B. Ramsey.Theorem C [JOR2] The class of P-SIC groups is equal to the class of HF∞ groups withpolynomially bounded Dehn functions in each degree. It includes all discrete groups which areasynchronously combable in polynomial time, and is closed under arbitrary extensions in thecategory of groups with word-length1; moreover, if π acts co�nitely and without inversion ona weighted acyclic simplicial complex X whose simplicial chains admit a polynomially boundedchain contraction, and the isotropy group of each simplex is P-SIC with respect to the inducedword-length, then π is P-SIC.The constraint imposed by the slightly technical �Dehn functions� appearing in the aboveresult is clari�ed by the following topological reformulation, due to Ji and Ramsey.Equivalence of Dehn functions - [JR] For an HF∞ group π, the Dehn functions of πare polynomially equivalent to the �course� Dehn functions of π, de�ned using �lling norms.1a short-exact sequence of groups with word-length (G1, L1) � (G2, L2) � (G3, L3) consists of a short-exactsequence of groups where L1 is the restriction of L2 to G1, and L3 is the word-length function on G3 inducedby L2 and the projection G2 � G3. In particular if G1 is P-SIC with respect to the standard word-length, thenin order for (G1, L1) to be P-SIC, one typically needs the image of G1 to be at most polynomially distorted in

G2 under the injection G1 � G2. 113



In other words, π has polynomially bounded Dehn functions i� there exists an HF∞ K(π, 1)-complex X whose universal cover X̃ satis�es the condition:
• For all n ≥ 1 there exists a polynomial pn such that for every map f : Sn → X̃ of acombinatorial n-sphere Sn to X̃, f extends to a map f̃ : Bn+1 → X̃ where Bn+1 is acombinatorial n + 1-disk for which (# of cells of Bn+1) ≤ pn(# cells of Sn).The last item in Theorem C generalizes toTheorem D [JOR2] If π acts co�nitely and without inversion on a weighted acyclicsimplicial complex X whose simplicial chains admit a polynomially bounded chain contraction,and the isotropy group of each simplex is P-IC with respect to the induced word-length, then πis P-IC.
P-SIC includes all CAT(0)-groups, as such groups admit synchronous linear combings.Poincar�e Duality groups provide another class of groups where this condition holds underseemingly mild constraints.Theorem E [JOR2] Suppose Bπ ' M , where M is a compact, closed, oriented n-dimensional manifold. Let µ′′

π ∈ Hn(M ×M) ∼= Hn(π× π) denote the fundamental cohomologyclass dual to the diagonal embedding ∆(M) ⊂M ×M . If µ′′
π is P-bounded, then π is P-IC.Conclusion The groups described by the Theorems C, D, and E all satisfy SNC(π).On the other hand, there exist elementary amenable groups which are not P-IC, includingsolvable groups with quadratic �rst Dehn function. A detailed discussion of these issues andexamples (in both the positive and negative direction) appears in [JOR2].

Cones of e�ective two-cycles on toric manifolds.Hiroshi SatoGifu Shotoku Gakuen University, Japan.hirosato@gifu.shotoku.ac.jpThe Kleiman-Mori cone, that is, the cone of e�ective one-cycles on an algebraic variety isone of the most important objects in the birational geometry. As a next step, in this talk, westudy the cone of e�ective two-cycles on a smooth projective toric variety. We explain aboutthe combinatorial description for numerical two-cycles on a toric manifold. As an application,we can determine whether a given toric manifold is a 2-Fano manifold or not easily.
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The topology of Positive scalar curvature.Thomas SchickUniversity of Goettingen, Germany.schick@uni-math.gwdg.deWhich compact smooth manifolds (no boundary) do admit a Riemannian metric withpositive scalar curvature? If there is one, how many are there?In this talk, we focus on the second question: does the space of metrics of positive scalarcurvature posses a rich topology?It is well know that the space of such metrics, as well as the moduli space (moduli theaction of the di�eomorphism group) has typically in�nitely many components; detected byindex invariants or secondary index invariants (rho invariants) (results of Hitchin, Lawson,..)Moreover, Hitchin shows that in certain dimensions the �rst homotopy group of the space ofmetrics is non-trivial. Some people conjectured, that all components of the moduli space arecontractible.In joint work with Boris Botvinnik, Bernhard Hanke, Mark Walsh we use the topology of theclassifying space of the Di�eomorphism group of DN (in particular non-trivial higher torsion)to produce non-trivial homotopy classes in πn for arbitrarily large n. The construction is basedon a famous smooth �ber bundle by Hatcher. However, these classes do not lift to the space ofmetrics itself.In joint work with Diarmuid Crowley we show that also the space of metrics has non-trivialclasses in πn for arbitrarily large n. They are transported from Di� via the action and are basedon non-trivial products in stable homotopy groups, detected in real K-theory.We will explain the relevant invariants and the constructions of the families of metrics.
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Manifolds with torus actionVladimir SharkoInstitute of Mathematics National Academy of Sciences of Ukraine, Ukraine.sharko@imath.kiev.uaSuppose that k-dimensional torus T k semi-free act on n-dimensional closed smooth manifold
W n(n > k > 1) and let M l

1,..., M l
p closed submanifolds of �xed points. Let f : W n → R be asmooth T k-invariant function on W n and let Σf the set of singular points of f .De�nition 1. The function f is called Morse-Bott function if Σf is disjont union of non-degenerate closed submanifolds M l
1,..., M l

p and and some number of T k.Theorem 1. Every smooth semi-free T k action on manifold W n with M l
1,..., M l

p submanifoldsof �xed points has an T k-invariant Morse-Bott function f .De�nition 2. Let f be an T k-invariant Morse-Bott function for smooth semi-free T k actionwith M l
1,..., M l

p submanifolds of �xed points on W n. Suppose that the index of a criticalsubmanifold M l
i of f is λi. The state of f is the collection of numbers λ1, λ2, . . . , λp, whichwe will be denoted by Stf(λi).De�nition 3. Let W n be a manifold with smooth semi-free T k-action which has M l

1,..., M l
psubmanifolds of �xed points. The T k-equivariant Morse numberMν

T k(W
n, St(λi)) of index

ν of a state St(λi) of W n is the minimum number of singular T k of index ν taken over all T k-invariant Morse-Bott functions onW n with state St(λi). The T k-equivariant Morse number
Mν

T k(W
n) of index ν of W n is the minimum number ofMν

T k(W
n, St(λi)) taken over all states.The T k-equivariant Morse number MT k(W n, St(λi)) of a state St(λi) is the minimumnumber of singular T k of all indices taken over all T k-invariant Morse-Bott functions on W nwith state St(λi). The T k-equivariant Morse number MT k(W n) of W n is the minimumnumber ofMT k(W n, St(λi)) taken over all states.There is an unsolved problem: for a manifold W n with a semi-free T k-action which has

M l
1,..., M l

p submanifolds of �xed points �nd exact values of Mν
T k(W

n, St(λi)), Mν
T k(W

n),
MT k(W n, St(λi)), and MT k(W n).De�nition 4. An T k-invariant Morse-Bott function f on W n with semi-free T k-action whichhas which has M l

1,..., M l
p submanifolds of �xed points is� minimal for index ν of a state St(λi) if the number of singular T k of f of index ν isequal toMν

T k(W
n, St(λi));� minimal for index ν if the number of singular T k of f of index ν is equal toMν

T k(W
n);� minimal for state St(λi) if the number of all singular circles of f is equal to

MT k(W n, St(λi));� minimal if the number of all singular T k of f is equal toMT k(W n).Theorem 2. Let W n (n > 2k) be a simply-connected manifold with free homology group of
Hi(W

n,Z) admits a smooth semi-free T k-action which has M l
1,..., M l

p submanifolds of �xedpoints. Then on W n for the sequence (0, . . . , 0, n − l, . . . , n − l) there exists a minimal T k-invariant Morse-Bott function g for the state St(0, . . . , 0, n− l, . . . , n− l).116



Characteristic classes of simplicial manifolds:combinatorics, electric circuits and homological algebra.Georgy SharyginITEP, Russia and AESC Moscow State University, Russia.sharygin@itep.ruThis talk is a report on the ongoing joint project of the author and Nikolai Mnev fromPDMI.In topology the term �simplicial n-manifold� refers to a n-dimensional simplicial complex,such that the links of all its k-simplices for all k are simplicial subdivisions of the standard
n − k − 1-dimensional sphere. It is well-known, that one can de�ne characteristic classes(Pontrjagin classes, Euler class, etc.) for arbitrary simplicial manifolds, or, more generally, forany homological manifold (i.e. where the condition above is replaced by a still weaker condition,that all the links have homology, isomorphic to that of the corresponding sphere), in such away that the expressions depend only on the local combinatorial structure of the complex (thiswas proved for example by R.Thom, Levitt and Rourke etc.). The problem of �nding suchexpressions in an explicit form is a long-standing one. Among many authors that contribute tothis �eld one can list Levitt and Rourke, Gabrielov, Gelfand and Losik, McPherson, Gaifullinetc.In my talk I am going to give a description of a new approach to this question, which isbased on the extensive use of the recently discovered by N.Mnev combinatoric construction,equivalent to the PL bundles. This construction (called the �combinatorial sphere bundle� orthe �Gauss functor�) associates to every simplex in a simplicial manifoldX a cellular subdivisionof nsphere and an aggregation map to every pair of adjoint simplices in X . It was shown byN.Mnev that this data is equivalent to the �normal PL bundle of the diagonal embedding� usedby Levitt and Rourke.In our joint work we use this construction and pass from the geometric picture to the levelof cochain complexes. In order to associate a chain map to an (abstract) aggregation we resortto the canonical euclidean structures on the complexes. This approach is quite canonical andenables one to write down explicit formulas for some characteristic classes, e.g. the Euler class.Calculations thereof involves manipulations with the so-called Kirhgo� laws for calculation ofelectric �ows in an electric circuits and give quite unexpected coe�cients. On the other hand,once in the domain of homology one can use the standard tools of the homological algebra, suchas the homotopy equivalence of the DG algebras, perturbation technics etc., which leads oneto a rather involved, but quite explicit formulas, that give an analog of the noncommutative1-cocycle, twisting cochains with values in an appropriate Cech complex and �nally enables oneto mimick the constructions of Bott, Dupont and the author of the characteristic classes.
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Classi�cation of embeddings below the metastabledimension.Arkadiy SkopenkovMoscow State University, Russia and Independent University of Moscow, Russia.skopenko@mccme.ruStatement of the main result.For a smooth (piecewise linear, PL) manifold N denote by Em(N) (Em
PL(N)) the set ofsmooth (PL) embeddings N → Rm up to smooth (PL) isotopy.The `connected sum' commutative group structure on Em(Sq) was de�ned for m ≥ q + 3by Hae�iger. We de�ne an `Sp-parametric connected sum' commutative group structure on

Em(Sp × Sq) and Em
PL(S

p × Sq) for m ≥ 2p+ q + 3; cf. [Sk07, PCS].Denote by Vk,l the Stiefel manifold of l-frames in Rk.Main Theorem. [Sk06] For p ≥ 1 and m ≥ max{2p+ q + 3, 2p+3q+3
2
}

Em(Sp × Sq) ∼= πq(Vm−q,p+1)⊕ Em(Sp+q) and Em
PL(S

p × Sq) ∼= πq(Vm−q,p+1)/sm,p,q,where for 2m > 2p + 3q + 3 we have sm,p,q = 0 while for 2m = 2p + 3q + 3 we set l :=
m− p− q − 1 = (q + 1)/2 and we have that sm,p,q is an integer multiple of the image of [ιl, ιl]under the map µ′′ from the exact sequence πq(Sl) µ′′→→ πq(Vm−q,p+1)→ πq(Vm−q,p) of the bundlede�ned by forgetting the last vector.In the smooth case the isomorphism from the right to the left is τ ⊕ #. Here #(g) is theconnected sum of the standard embedding Sp×Sq → Rm with embedding g : Sp+q → Rm. ThePL analogue τPL is de�ned analogously and is an epimorphism with the kernel sm,p,q.De�nition of the map τ [Sk02, proof of Torus Lemma 6.1, Sk08, �6]. Recall that πq(Vm−q,p+1)is isomorphic to the group of smooth maps Sq → Vm−q,p+1 up to smooth homotopy. These mapscan be considered as smooth maps ϕ : Sq × Sp → ∂Dm−q. De�ne the smooth embedding τ(ϕ)as the composition

Sp × Sq ϕ×pr2→ → ∂Dm−q × Sq ⊂ Dm−q × Sq ⊂ Rm.Here pr2 is the projection onto the second factor and ⊂ are standard inclusions.Discussion of the main result.This paper is on the classical Knotting Problem: for an n-manifold N and a number m,describe isotopy classes of embeddings N → Rm. For recent surveys see [RS99, Sk08, HCEC].Many interesting examples of embeddings are embeddings Sp × Sq → Rm, i.e. knottedtori. See references in [KT]. A classi�cation of knotted tori is a natural next step (afterthe Hae�iger link theory and the classi�cation of embeddings of highly-connected manifolds)towards classi�cation of embeddings of arbitrary manifolds. Since the general Knotting Problemis very hard [HCEC], it is very interesting to solve it for the important particular case ofknotted tori. Classi�cation results for knotted tori gives some insight or even precise informationconcerning arbitrary manifolds (this is formalized in [Sk07], [Sk10], [PCS]) and reveals newinteresting relations to algebraic topology.We have Em(Sp × Sq) = Em
PL(S

p × Sq) = 0 for p ≤ q and m ≥ p + 2q + 2 [Sk08, Theorem2.8.b]. In particular, the Main Theorem is trivial for p ≥ q. From now on assume that p < q.118



The Knotting Problem is more accessible for
2m ≥ 3n+ 4.In particular, Em(Sn) = 0 for 2m ≥ 3n + 4. Thus for 2m ≥ 3p + 3q + 4 the Main Theorem isknown [Sk02, Corollary 1.5].The Knotting Problem is much harder for 2m < 3n+4: if N is a closed manifold that is not adisjoint union of spheres, then until recent results no complete readily calculable smooth isotopyclassi�cation was known, in spite of the existence of the interesting approaches of Browder-Walland Goodwillie-Weiss.However, if a closed manifold N is d-connected and

3n+ 4 > 2m ≥ 3n+ 3− d,there are classi�cation results in the PL category [Sk02, Sk08, �3]. Thus the PL case of theMain Theorem is known for 3p + 3q + 4 > 2m ≥ 2p + 3q + 4. The smooth case of the MainTheorem for 3p + 3q + 4 > 2m ≥ 2p + 3q + 4 is new but is not hard. This case follows by thePL case and the following result [Sk06]:
Em(Sp × Sq) ∼= Em(Sp × Sq)

im#
⊕Em(Sp+q) for m ≥ 2p+ q + 3.If N is a closed d-connected n-manifold, then the Knotting Problem is much harder for

2m ≤ 3n+2−d because even the classi�cation in the PL category is unknown (and methods of[Sk02, Sk08', Sk05, CS08] do not work without modi�cation). The most interesting and the mostdi� cult case of the Main Theorem is 2m = 2p+ 3q + 3, which corresponds to the `boundary'case
2m = 3n+ 2− d.This case 2m = 3p+2q+3 requires new ideas which are hopefully are interesting in themselves.The methods which we develop for the `boundary' case can be extended to classify embeddingsin other cases [CRS07, CRS08].References[CRS07] M. Cencelj, D. Repov�s and M. Skopenkov, Homotopy type of the complement of an immersionand classi�cation of embeddings of tori, Uspekhi Mat. Nauk, vol. 62:5, 2007, pp 165-166English transl.: Russian Math. Surveys, vol. 62:5, 2007.[CRS08] M. Cencelj, D. Repov�s and M. Skopenkov, A new invariant of higher-dimensional embeddings,arXiv:math/0811.2745[HCEC] http://www.map.him.uni-bonn.de/index.php/High_codimension_embeddings:_classi�cation[KT] http://www.map.him.uni-bonn.de/index.php/Knotted_tori[PCS] http://www.map.him.uni-bonn.de/index.php/Parametric_connected_sum[RS99] D. Repovs and A. Skopenkov, New results on embeddings of polyhedra and manifolds intoEuclidean spaces (in Russian), 1999, vol. 54:6, Uspekhi Mat. Nauk, pp 61�109.English transl.: Russ. Math. Surv., 1999, vol 54:6, pp 1149�1196119



[Sk06] A. Skopenkov, Classi�cation of embeddings below the metastable dimension,arxiv:math/0607422 (version 3 or higher)[Sk07] A. Skopenkov, A new invariant and parametric connected sum of embeddings, 2007, vol 197,Fund. Math., pp 253�269, arxiv:math/0509621[Sk08] A. Skopenkov, Embedding and knotting of manifolds in Euclidean spaces, in: Surveys inContemporary Mathematics, Ed. N. Young and Y. Choi, 2008, vol 347, London Math. Soc.Lect. Notes, pp 248�342, arxiv:math/0604045[Sk10] A. Skopenkov, Embeddings of k-connected n-manifolds into R2n−k−1, Proc. AMS, 2010, toappear arxiv:math/0812.0263
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Toric genera of homogeneous spaces and their �brations.Svjetlana Terzi�cUniversity of Montenegro, Montenegro.sterzic@ac.meWe present the results on universal toric genus obtained as continuation of our work [3] onuniversal toric genus of homogeneous spaces.The notion of universal toric genus was introduced in [2] and explained in detail in [1]. Itcan be constructed for any even dimensional manifoldM2n with a given torus action and stablecomplex structure which is equivariant under the torus action. If the torus action has �nite setof isolated �xed points than the universal toric genus for such action can be localized meaningthat it can be expressed in terms of signs and weights at �xed points for the representationsthat gives arise from the given torus action. Appealing to this result, it is obtained in [3] anexplicit formula for the universal toric genus of homogeneous spaces G/H endowed with thecanonical action of the common maximal torus for G and H , where rkH = rkG. Applying theChern-Dold character, the explicit formulas for the complex cobordism classes as well as theChern characteristic numbers for these spaces are established.We study further the notion of the universal toric genus on some speci�c homogeneousspaces and expand it to some �brations. We generalize our results from [3] on universal toricgenus of �ag and Grassman manifolds to an arbitrary invariant almost complex structure as wellas to the generalized Grassman manifolds. We also consider homogeneous �brations H/K →
G/K → G/H where all groups have equal ranks and assume that the �ber and the base areendowed with the invariant almost complex structures. It is obtained the explicit formula, interms of the local data for the base and the �ber, for the universal toric genus as well as forthe cobordsim class for G/K related to the induced invariant almost complex structure. Itis also studied the muiltiplicativity problem for universal toric genus of these �brations andestablished the e�ective criterion for it to be classically multiplicative. We expand the resultsfrom homogeneous to an arbitrary �brations. Given two stable complex manifoldsX and F withan equivariant action of the torus T k we provide the construction of a T k- equivariant stablecomplex manifold E which �bers over X with �ber F and whose stable complex structure andtorus action naturally arises from those of X and F . The explicit formula for the universal toricgenus of E is obtained and established the condition to be multiplicative. As an application weprovide, in particular, some characteristic �brations of compex and quaternionic �ag manifolds
U(n)/T n and Sp(n)/T n.The talk is based on the joint work with Victor M. Buchstaber [4].References[1] Victor M. Buchstaber, Taras E. Panov and Nigel Ray Toric genera, to appear inInt. Math. Res. Notices, arXiv: 0908.3298v1 [math.AT][2] V. M. Buchstaber and N. Ray, The universal equivariant genus and Krichever's formula, (Russian)Uspekhi Mat. Nauk 62 (1) (2007), 195�196. (english translation in Russian Math. Surveys 62(1) (2007), .)[3] Victor M. Buchstaber and Svjetlana Terzi�c, Equivariant Complex Structures on HomogeneousSpaces and Their Cobordism Classes, American Mathematical Society Translations, Series 2,Volume 224, Advances in the Mathematical Sciences, 2008, 27�57.121



[4] Victor M. Buchstaber and Svjetlana Terzi�c, Toric genera of homogeneous spaces and their�brations, preprint 2010
Homotopy decompositions of gauge groups andapplications to moduli spaces.Stephen TheriaultUniversity of Aberdeen, United Kingdom.s.theriault@abdn.ac.ukWe focus on gauge groups of principal U(n)-bundles over orientable Riemann surfaces. Inmany cases the gauge groups are decomposed, up to homotopy equivalence, as products of othermore well known spaces. As a consequence, the calculation of their homotopy groups reduces tothat of spheres or U(n).This can then be applied to calculate the homotopy groups of certainmoduli spaces through a range, answering a question of Daskalopoulos and Uhlenbeck.
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Complex structures on moment-angle-manifolds.Yury UstinovskyMoscow State University, Russia.yura.ust@gmail.comMoment-angle-complexes ZK , associated to a simplicial complexes K, were studied bymany authors in context of 'toric topology'. It is well-known, that in many cases moment-angle-complexes are topologic manifolds. We show that the moment-angle-manifold associatedto a complete simplcial fan admits smooth and complex structures. Moment-angle-manifoldsendowed with these complex structures provide an interesting series of compact non-symplecticcomplex manifolds, including classic examples of Hopf and Calabi-Eckmann. We describethese manifolds as holomorphic principal T k-bundles over compact toric varieties and compute(additively) their Dolbeault cohomology.
Gaudin subalgebras and stable rational curvesAlexander VeselovLoughborough University, United Kingdom and Moscow State University, Moscow.A.P.Veselov@lboro.ac.ukGaudin subalgebras are abelian Lie subalgebras of maximal dimension spanned bygenerators of the Kohno�Drinfeld Lie algebra tn, which can be interpreted as the holonomyLie algebra of the con�guration space of n distinct points on the complex plane, or the set ofvalues for the universal Knizhnik-Zamolodchikov connection.I will explain that Gaudin subalgebras form a variety isomorphic to the moduli space M̄0,n+1of stable curves of genus zero with n+1 marked points. In particular, this gives an embeddingof M̄0,n+1 in a Grassmannian of (n− 1)-planes in an n(n− 1)/2-dimensional space.The talk is based on a joint work with Aguirre and Felder.
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Upper and lower bounds for nestohedraVadim VolodinMoscow State University, Moscow.volodinvadim@gmail.comSimple polytopes play important role in toric geometry and topology. The classical problemof upper and lower bounds for h-vectors of n-dimensional simple polytopes with �xed numberof facets is solved in [Ba1], [Ba2] and [Mc].Nowadays there appeared an important subclass of simple polytopes - Delzant polytopes.For every Delzant polytope P n there exists a Hamiltonian toric manifold M2n such that P n isthe image of the moment map. Davis-Januszkiewicz theorem states that odd Betti numbers
b2i−1(M

2n) are zero and even Betti numbers b2i(M2n) are equal to components hi(P n) ofthe h-vector of P n. So, the problem of upper and lower bounds for h-vectors of Delzantpolytopes become actual, because its solution gives upper and lower bounds for Betti numbersof Hamiltonian toric manifolds.Feichtner and Sturmfels (see [FS]) and Postnikov (see [1]) showed that the Minkowski sumof some set of regular simplices is a simple polytope if this set satis�es certain combinatorialconditions identifying it as a buiding set. The resulting family of simple polytopes was callednestohedra in [PRW] because of their connection to nested sets considered by De Concini andProcesi in the context of subspace arrangements. From results of [FS] directly follows thatnestohedra are Delzant polytopes. Special cases of building sets are vertex sets of connectedsubgraphs in a given graph; the corresponding nestohedra called graph-associahedra by Carrand Devadoss were �rst studied in [CD].From [FM] we know that if B1 ⊆ B2 for connected building sets, then PB2 is obtained from
PB1 by sequential shaving some faces, consequently, hi(PB1) 6 hi(PB2). Therefore, hi(∆n) 6

hi(PB) 6 hi(Pe
n) for every n-dimensional nestohedron PB and these bounds are unimprovable.In the combinatorics of �ag simple polytopes especially interested is γ-vector. Using[Bu1] and de�nitions of g-,h- and f -vectors one can prove that componentwise inequality

γ(P1) 6 γ(P2) for simple n-polytopes P1 and P2 implies componentwise inequalities:g(P1) 6

g(P2), h(P1) 6 h(P2), f(P1) 6 f(P2).Gal's conjecture (which is a generalization of famous Charney-Davis conjecture) statesthat �ag simple polytopes have nonnegative γ-vectors (see [G]). In [Bu2] it was describedrealization of the associahedron as a polytope obtained from the standard cube by shavingfaces of codimension 2. We show that every �ag nestohedron has such a realization. As acorollary we derive that unimprovable bounds for γ-vectors of �ag nestohedra are γ(In) and
γ(Pen). That includes Gal's conjecture for �ag nestohedra, since γi(In) = 0, i > 0.There are remarkable series of graph-associahedra corresponding to series of graphs:associahedra Asn (path graphs), cyclohedra Cyn (cyclic graphs), permutohedra Pen (completegraphs) and stellohedra Stn (star graphs). Using these series we obtain upper and lower boundsfor γ-vectors of graph-associahedra and some its important subclasses.The main result is following:Theorem. There are following unimprovable bounds:1) γi(In) 6 γi(PB) 6 γi(Pe

n) for any �ag n-dimensional nestohedron PB;2) γi(Asn) 6 γi(PΓn+1) 6 γi(Pe
n) for any connected graph Γn+1 on [n + 1];3) γ(Cyn) 6 γi(PΓn+1) 6 γi(Pe
n) for any Hamiltonian graph Γn+1 on [n+ 1];124



4) γi(Asn) 6 γi(PΓn+1) 6 γi(St
n) for any tree Γn+1 on [n+ 1].The similar bounds also hold for f -,g- and h-vectors.References[Ba1] D. Barnette,The minimum number of vertices of a simple polytope. Israel Journal ofMathematics, vol. 10, pp. 121-125, 1971.[Ba2] D. Barnette,A proof for the lower bound conjecture for convex polytopes. Paci�c Journal ofMathematics, vol. 46, no. 2, pp. 349-354, 1973.[Bu1] V. Buchstaber,Ring of simple polytopes and di�erential equations. Trudy MatematicheskogoInstituta imeni V.A. Steklova, vol. 263, pp. 18-43, 2008.[Bu2] V. Buchstaber,Lectures on Toric Topology. Toric Topology Workshop, KAIST 2008, Trendsin Mathematics, Information Center for Mathematical Sciences, vol. 11, no. 1, pp. 1-55,2008.[BV] V. Buchstaber, V. Volodin,Upper and lower bound theorems for graph-associahedra.arXiv:1005.1631.[CD] M. Carr, S. Devadoss,Coxeter complexes and graph associahedra. Topology and itsApplications, vol. 153, pp. 2155-2168, 2006; arXiv:math/0407229.[FM] E.-M. Feichtner, I. Mueller,On the topology of nested set complexes. Proceedings ofAmerican Mathematical Society, vol. 133, no. 4, pp. 999-1006, 2005; arXiv:math/0311430.[FS] E.-M. Feichtner, B. Sturmfels,Matroid polytopes, nested sets, and Bergman fans.Portugaliae Mathematica (N.S.), vol. 62, no. 4, pp. 437-468, 2005; arXiv:math/0411260.[G] S. Gal,Real root conjecture fails for �ve- and higher-dimensional spheres. Discrete &Computational Geometry, vol. 34, no. 2, pp. 269-284, 2005; arXiv:math/0501046.[Mc] P. McMullen,The maximum numbers of faces of a convex polytope. Mathematika, vol. 17,pp. 179-184, 1970.[P] A. Postnikov,Permutohedra, associahedra, and beyond. International MathematicsResearch Notices, no. 6, pp. 1026-1106, 2009; arXiv:math/0507163.[PRW] A. Postnikov, V. Reiner, L. Williams,Faces of generalized permutohedra. DocumentaMathematica, vol. 13, pp. 207-273, 2008; arXiv:math/0609184.[V1] V. Volodin,Cubical realizations of �ag nestohedra and Gal's conjecture. arXiv:0912.5478.[V2] V. Volodin,Cubic realizations of �ag nesohedra and proof of Gal's conjecture for them.UMN, vol. 65, no. 1, pp. 183-184, 2010.
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Torus �brations and localization of index.Takahiko Yoshida1Meiji University, Japan.takahiko@math.meiji.ac.jpThis talk is based on the joint work [3, 4] with Hajime Fujita and Mikio Furuta.LetM be a possibly non-compact Riemannian manifold andW a Z2-graded Cli�ord modulebundle on M . Suppose that M has an open subset V with complement M \ V compact and Vis covered by �nitely many open subsets {Vα}α∈A such that each Vα has a structure of the totalspace of a torus bundle πα : Vα → Uα and eachW |Vα is equipped with a Dirac-type operator Dαalong �bers of πα. Under some compatibility and acyclicity conditions we will show that thereexists an integer ind(M,V ) depending on the all data such that ind(M,V ) has the followingproperties:1. ind(M,V ) is invariant under continuous deformations of the data.2. If M is closed, then ind(M,V ) is equal to the index indD of a Dirac-type operator D on
W .3. Suppose V ′ is an open subset of V with M \ V ′ compact such that the torus bundlestructures on V can be restricted to V ′. Then we have

ind(M,V ) = ind(M,V ′).4. Suppose M ′ is an open neighborhood of M \ V such that the torus bundle structures on
V can be restricted to V ∩M ′. Then ind(M,V ) has the following excision property

ind(M,V ) = ind(M ′, V ∩M ′).5. Suppose M is a disjoint union M =M1

∐
M2. Then we have the following sum formula

ind(M,V ) = ind(M1, V ∩M1) + ind(M2, V ∩M2).6. We have a product formula for ind(M,V ). For the precise statement see [4, Theorem 5.8].We call ind(M,V ) a local index. In the case where M is closed, as a corollary we obtain alocalization formula for the index of a Dirac-type operator on W .To construct ind(M,V ) we introduce a deformation of a Dirac-type operator by using
Dα's. The deformation allows an interpretation as an adiabatic limit or an in�nite dimensionalanalogue of Witten's deformation.We will describe an application to symplectic geometry. For a closed symplectic manifoldwith prequantization line bundle the Riemann-Roch number is de�ned to be the index of aSpinc Dirac operator with coe�cients in the prequantization line bundle.Suppose the symplectic manifold is equipped with a structure of the total space of aLagrangian �ber bundle. Note that the restriction of the prequantization line bundle to each�ber is �at. A �ber of the Lagrangian �ber bundle is said to be Bohr-Sommerfeld if therestriction of the prequantization line bundle to the �ber is trivially �at. Bohr-Sommerfeld1Partly supported by Grant-in-Aid for Young Scientists (B) 22740046, Grant-in-Aid for Scienti�c Research(C) 20540089, and Fujyukai Foundation. 126



�bers appear discretely. Then it is known in [1] that the Riemann-Roch number is equal to thenumber of Bohr-Sommerfeld �bers.Similar phenomena have been observed for several examples of Lagrangian �ber bundleswith singular �bers, such as,
• moment maps of toric varieties [2],
• Gelfand-Cetlin's completely Hamiltonian system for a complex �ag manifold [7],
• Goldman's Hamiltonian system on the moduli space of �at SU(2)-bundle on a Riemannsurface [5, 9],and for non symplectic generalizations
• presymplectic toric manifolds [10],
• Spinc manifolds [6],
• torus manifolds [11, 8],and so on.We will apply the localization formula for the local index to understand these phenomenaand show that the Riemann-Roch number is described as the sum of the number of nonsingularBohr-Sommerfeld �bers and the contributions from singular �bers.References[1] J. E. Andersen, Geometric quantization of symplectic manifolds with respect to reducible non-negative polarizations, Comm. Math. Phys. 183 (1997), no. 2, 401�421.[2] V. Danilov, The geometry of toric varieties (Russian), Uspekhi Mat. Nauk 33 (1978), no. 2,85�134, English translation: Russian Math. Surveys 33 (1978), no. 2, 97�154.[3] H. Fujita, M. Furuta, and T. Yoshida, Torus �brations and localization of index I- polarizationand acyclic �brations -, to appear in J. Math. Sci. Univ. Tokyo. Also available at arXiv:0804.3258,2008.[4] H. Fujita, M. Furuta, and T. Yoshida, Torus �brations and localization of index II - local indexfor acyclic compatible system -, UTMS Preprint Series 2009-21, 64 pages. Also available atarXiv:0910.0358, 2009.[5] W. M. Goldman, Invariant functions on Lie groups and Hamiltonian �ows of surface grouprepresentations, Invent. Math. 85 (1986), no. 2, 263�302.[6] M. D. Grossberg and Y. Karshon, Equivariant index and the moment map for completelyintergrable torus actions, Adv. Math. 133 (1998), no. 2, 185�223.[7] V. Guillemin and S. Sternberg, The Gelfand-Cetlin system and quantization of the complex �agmanifolds, J. Funct. Anal. 52 (1983), no. 1, 106�128.[8] A. Hattori and M. Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003), no. 1, 1�68.127



[9] L. Je�rey and J. Weitsman, Bohr-Sommerfeld orbits in the moduli space of �at connections andthe Verlinde dimension formula, Comm. Math. Phys. 150 (1992), no. 3, 593�630.[10] Y. Karshon and S. Tolman, The moment map and line bundles over presymplectic toric manifolds,J. Di�erential Geom. 38 (1993), no. 3, 465�484.[11] M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tohoku Math. J. (2) 51(1999), no. 2, 237�265.
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Discrete and continuous complexes and posets intopological combinatorics.Rade T. �Zivaljevi�cMathematical Institute SANU, Serbia.rade@mi.sanu.ac.rsWe collect together and analyze from the same point of view some important classes ofcomplexes which exhibit both discrete and continuous nature and which have continually playedan important role in topology, combinatorics and their applications. Among the key examplesare:(1) Moment-angle complexes ZK and polyhedral product functors (X,A)K as �continuouscomplexes� over a discrete (simplicial) complex K.(2) Homotopy colimits of diagrams as continuous complexes over the corresponding (face)poset.(3) Continuous posets in the sense of Vassiliev and discrete-continuous polytopes in the senseof Kalai and Wigderson, continuous �Bier-spheres�.(4) Convex hulls of neighborly embedded manifolds (complexes).(5) �Continuous in�ation� of simplicial (polyhedral) complexes as a continuous analog of thediscrete in�ation of complexes (A. Bj�orner, M. Wachs, V. Welker, Poset Fiber Theorems,T.A.M.S., 2005).(6) Complexes of �vertex-colored polytopes� (after de Longueville and �Zivaljevi�c) with discreteand continuous sets of colors, etc.A uni�ed framework for studying discrete-continuous analogues of complexes and posets(with the emphasis on combinatorially and geometrically motivated constructions andinvariants) was proposed by the author in the paper �Combinatorics of topological posets:Homotopy complementation formulas�, Adv. Appl. Math. 21 (1998), 547�-574.This paper continued the program of using homotopy colimits and related constructions ingeometric and topological combinatorics which was initiated in Ziegler-�Zivaljevi�c, Math. Ann.1993, and Welker-Ziegler-�Zivaljevi�c, J. Reine Angew. Math. 1999. For more recent applicationsof homotopy colimits and other homotopical methods the reader is referred to Panov-Ray-Vogt, arXiv:math/0202081v1 [math.AT]; Panov-Ray, arXiv:0707.0300v2 [math.AT], and Bahri-Bendersky-Cohen-Gitler, arXiv:1001.3372v1 [math.AT].We plan to give a brief overview of the area emphasizing the interplay of discrete andcontinuous in some fundamental constructions (Vassiliev geometric resolutions, convex hullsof neighborly polytopes, etc.). As an illustration of the use of complexes of �vertex-coloredpolytopes� (joint work with Mark de Longueville, Advances in Mathematics, 2008) we exhibit a�Multidimensional splitting necklace theorem� which extends the well known one-dimensionalcase due to Noga Alon.
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Section �Algebra and Number Theory�On symmetry groups of quasicrystals.Vyacheslav ArtamonovMoscow State University, Russia.artamon@mech.math.msu.suA mathematical model for crystals was presented by B. Delonias. It involves the notion ofa symmetry group of a crystal as a subgroup of isometry group of an Euclidean space.In 1984 a new alloy Al0,86Mn0,14 was discovered with a symmetry which was not allowed inthe symmetry theory of crystals. The new metallic alloys are called quasicrystals.The most common mathematical models of quasicrystals is a cut and project scheme. Let
E be an Euclidean space with a direct decomposition E = U ⊕V and with a discrete subgroup
M such that E/M is compact, M ∩ V = 0 and ρ(M) is dense in V . Consider the diagram ofprojections of groups

U Eπ
oo

ρ
// V

∪
M

.A nonempty compact convex subsetW ⊂ V is a window ifW is the completion of its interior. Aproper symmetry group SymWQ of a quasicrystal Q is the group of all a�ne transformationsof the hyperspace E which map the set Q bijectively onto itself. A general symmetry group
Sym is a group of all a�ne transformation of the hyperspace E such that M is Sym-invariantand U is stable under all di�erentials of elements of Sym. It is shown that SymW Q ⊆ Sym .These is found a classi�cation of subgroups of Sym of the form SymW Q for some window
W . The class of these subgroups contain �nite subgroups of Sym. There is found a classi�cationof �nite subgroups in Sym in the case when dimensions of U, V is at most 3.
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Simultaneous Diophantine approximations andgeneralizations of the continued fraction.Alexander BrunoKeldysh Institute of Applied Mathematics, Moscow.abruno@keldysh.ruIn the space Rn, suppose that we are given l homogeneous linear forms and k homogeneousquadratic forms; each quadratic form is the product of two complex conjugate linear forms, and
l + 2k = n. The moduli of all m forms (m = k + l) de�ne a mapping of Rn to the nonnegativeorthant Rm

+ of the space Rm. Nonzero integer points from Rn are mapped to a set Z ⊂ Rm
+ . Theclosure of the convex hull G of Z is a polyhedral set in Rm

+ . Its boundary ∂G is of dimension
m − 1 and contains the images of the best Diophantine approximations to the root subspacesof all m forms. In the algebraic case, m forms are related in a certain manner to the roots ofan irreducible polynomial of degree n that has l real roots and k pairs of complex conjugateroots. It is proved that, in the algebraic case, the boundary ∂G has m−1 independent periods.This is a generalization of Lagrange's theorem on the periodicity of the continued fraction of aquadratic irrationality.For small m see [1�6] and for arbitrary m see [7].References[1] A.D.Bruno Structure of best Diophantine approximations // Doklady Akademii Nauk 402:4 (2005)439�444 (R) = Doklady Mathematics 71:3 (2005) 396�400 (E)[2] A.D.Bruno Generalizied continued fraction algorithm // Ibid. 402:6 (2005) 732�736 (R) = Ibid.71:3 (2005) 446�450 (E)[3] A.D.Bruno, V. I. Parusnikov Further generalization of the continued fraction // Doklady AkademiiNauk 410:1 (2006) 12�16 (R) = Doklady Mathematics 74:2 (2006) 628�632 (E)[4] A.D.Bruno Generalizations of continued fraction // Chebyshevskii sbornik, 7:3 (2006) 4�71.[5] A.D.Bruno, V. I. Parusnikov Two-way generalization of the continued fraction // DokladyAkademii Nauk 429:6 (2009) 727�730 (R) = Doklady Mathematics 80:3 (2009) 887�890 (E).[6] A.D.Bruno New deneralization of continued fraction, I. Functiones et Approximation (2010).[7] A.D.Bruno Structure of multidimentional Diophantine approximations// Doklady Akademii Nauk433:5 (2010) 587�589 (R) = Doklady Mathematics 82:1 (2010) (E)
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Transference inequalities for Diophantine exponents.OlegN.German1Moscow State University, Russia.german@mech.math.msu.suConsider a system of linear equations
Θx = ywith x ∈ Rm, y ∈ Rn and

Θ =



θ11 · · · θ1m... . . . ...
θn1 · · · θnm


 , θij ∈ R.De�nition 7. The supremum of real numbers γ, such that there are in�nitely many x ∈ Zm,

y ∈ Zn satisfying the inequality
|Θx− y|∞ 6 |x|−γ∞ ,where |·|∞ denotes the sup-norm in the corresponding space, is called the individual Diophantineexponent of Θ and is denoted by β(Θ).De�nition 8. The supremum of real numbers γ, such that for each t large enough there are

x ∈ Zm, y ∈ Zn satisfying the inequalities
0 < |x|∞ 6 t, |Θx− y|∞ 6 t−γ ,is called the uniform Diophantine exponent of Θ and is denoted by α(Θ).The talk is devoted to the relations between the quantities α(Θ), α(Θᵀ), β(Θ), β(Θᵀ), where

Θᵀ denotes the transposed matrix. New inequalities will be proposed, which generalize or re�nethe existing results of Jarn�ik, Khintchine, Apfelbeck, Dyson, Laurent, Bugeaud and others.Besides that, the method used to obtain these inequalities allowed to improve the classicalMahler's transference theorem.1. Uniform exponentsThe strongest result connecting α(Θ) and α(Θᵀ) used to be the following theorem proved byApfelbeck:Theorem 1. (i) We always have
α(Θᵀ) >

nα(Θ) + n− 1

(m− 1)α(Θ) +m
.

(ii) If m > 1 and α(Θ) > (2(m+ n− 1)(m+ n− 3) +m)/n, then
α(Θᵀ) >

1

m

(
n+

n(nα(Θ)−m)− 2n(m+ n− 3)

(m− 1)(nα(Θ)−m) +m− (m− 2)(m+ n− 3)

)
.1This research was supported by RFBR (grant N◦ 09�01�00371a) and the grant of the President of RussianFederation N◦ MK�1226.2010.1. 132



Our �rst result improves Theorem 1:Theorem 1. For all positive integers n, m, not equal simultaneously to 1, we have
α(Θᵀ) >





n− 1

m− α(Θ)
, if α(Θ) 6 1,

n− α(Θ)−1

m− 1
, if α(Θ) > 1.2. Individual exponentsThe classical Khintchine's transference theorem connects β(Θ) and β(Θᵀ) in the case n = 1:Theorem 2. If n = 1, then

β(Θ)

(m− 1)β(Θ) +m
6 β(Θᵀ) 6

β(Θ)−m+ 1

m
.These inequalities cannot be improved if only β(Θ) and β(Θᵀ) are considered. However,stronger inequalities can be obtained if α(Θ) and α(Θᵀ) are also taken into account. Thecorresponding result belongs to Laurent and Bugeaud:Theorem 3. If n = 1, then

(α(Θ)− 1)β(Θ)

((m− 2)α(Θ) + 1)β(Θ) + (m− 1)α(Θ)
6 β(Θᵀ) 6

(1− α(Θᵀ))β(Θ)−m+ 2− α(Θᵀ)

m− 1
.Theorem 2 was later generalized to the case of arbitrary n, m by Dyson (a simpler proofwas later obtained by Khintchine):Theorem 4. For all n, m, not equal simultaneously to 1,

β(Θᵀ) >
nβ(Θ) + n− 1

(m− 1)β(Θ) +m
.Our second result generalizes Theorem 3 and improves Theorem 4 the way Theorem 3improves Theorem 2:Theorem 2. For all positive integers n, m, not equal simultaneously to 1, we have threeinequalities

β(Θᵀ) >
nβ(Θ) + n− 1

(m− 1)β(Θ) +m
,

β(Θᵀ) >
(n− 1)(1 + β(Θ))− (1− α(Θ))

(m− 1)(1 + β(Θ)) + (1− α(Θ))
,

β(Θᵀ) >
(n− 1)(1 + β(Θ)−1)− (α(Θ)−1 − 1)

(m− 1)(1 + β(Θ)−1) + (α(Θ)−1 − 1)
.
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3. Transference theoremOne of the strongest theorems describing Khintchine's transference principle belongs to Mahler:Theorem 5. If there are x ∈ Zm, y ∈ Zn, such that
0 < |x|∞ 6 X, |Θx− y|∞ 6 U,then there are x ∈ Zm, y ∈ Zn, such that
0 < |y|∞ 6 Y, |Θᵀy − x|∞ 6 V,where

Y = (d− 1)
(
XmU1−m) 1

d−1 , V = (d− 1)
(
X1−nUn

) 1
d−1 , and d = n +m.Our third result improves Theorem 5. Namely, we substitute the factor d − 1 by a smallerfactor tending to 1 as d → ∞. In order to give the precise statement let us denote by Bd∞ theunit ball in the sup-norm in Rd, i.e. the cube

{
x = (x1, . . . , xd) ∈ Rd

∣∣∣ |xi| 6 1, i = 1, . . . , d
}and set

∆d =
1

2d−1
√
d
vold−1

{
x ∈ Bd∞

∣∣∣
d∑

i=1

xi = 0
}
,where vold−1(·) denotes the (d− 1)-dimensional Lebesgue measure.It follows from Vaaler's and Ball's theorems that the volume of each (d − 1)-dimensionalcentral section of Bd∞ is bounded between 2d−1 and 2d−1

√
2. Hence

√
d/2 6 ∆−1

d 6
√
d,which implies that ∆− 1

d−1

d → 1 as d→∞. The following Theorem improves Theorem 5:Theorem 6. If there are x ∈ Zm, y ∈ Zn, such that
0 < |x|∞ 6 X, |Θx− y|∞ 6 U,then there are x ∈ Zm, y ∈ Zn, such that
0 < |y|∞ 6 Y, |Θᵀy − x|∞ 6 V,where

Y = ∆
− 1

d−1

d

(
XmU1−m) 1

d−1 , V = ∆
− 1

d−1

d

(
X1−nUn

) 1
d−1 .
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Parameterized di�erential Galois theory.Sergey GorchinskiySteklov Mathematical Institute, Russia.gorchins@mi.ras.ruThe talk is based on a common work with A.Ovchinnikov and H.Gillet.It is known that symmetries of solution spaces of linear di�erential equations are algebraicgroups. Given a family of linear di�erential equations, one often obtains (non-linear) di�erentialequations with respect to parameters of the base on the matrix elements of the corresponding�ber-wise groups of symmetries. This leads to parameterized di�erential Galois groups, whichare symmetries of solution spaces of linear di�erential equations with parameters that commutewith taking derivatives along the parameters. First they were de�ned and studied by M.Singerand Ph.Cassidy in the case when the �eld of functions in parameters is di�erentially closed,that is, any compatible system of di�erential equations has a solution in the �eld of functionsin parameters.We discuss a recent approach to this based on Atiyah extensions and a di�erential versionof Tannakian categories. As an application we obtain that in a wide range of examples witha non-di�erentially closed �eld of functions in parameters, parameterized di�erential Galoisgroups and Galois correspondence still can be constructed.
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Multidimensional Gauss Reduction Theory for conjugacyclasses of SL(n,Z).Oleg KarpenkovTU Graz, Austria.karpenk@mccme.ruTwo matrices M1 and M2 in SL(n,Z) are conjugate if there exists a matrix X in SL(n,Z)such that
M2 = XM1X

−1.In our talk we study the following problem.Problem. Describe the set of conjugacy classes in SL(n,Z).One of the mostly common strategies to solve this kind of problems is to �nd completeinvariants to distinguish the classes, and further if possible to write normal form of conjugacyclasses. For instance, in the similar problem for SL(n, F ) for an algebraically closed �eld F onehave Jordan Normal Forms as a complete description of conjugacy classes. Jordan blocks forma complete invariant in this case. If the �eld is not algebraically closed, the description is muchmore complicated via Jordan-Chevalley decomposition.A complete description of the set of conjugacy classes in SL(2,Z) is given by GaussReduction Theory. It turns out that it is natural to consider several normal forms for aconjugacy class but not necessarily only one. Recently we showed a geometric explanationof Gauss Reduction Theory it terms of geometric continued fractions.We extend this approach to the multidimensional case. We propose a geometric description ofconjugacy classes in terms of multidimensional continued fractions in the sense of Klein-Voronoi.In the totally-real case such multidimensional continued fractions are unions of boundaries ofconvex hulls of all integer point inside the cones de�ned by invariant hyperplanes of linearoperators with given matrices. These fractions introduced by F. Klein in 1895 for the totallyreal case. A little later G. F. Voronoi made the �rst attempts to generalize the construction tothe rest cases.We consider Hessenberg matrices as a multidimensional analog of reduced matrices in GaussReduction Theory. Hessenberg matrices are matrices that vanish below the superdiagonal.We introduce a natural notion of Hessenberg complexity for Hessenberg matrices, which isa nonnegative integer function, and show that each conjugacy class of irreducible matrices hasonly �nite number of Hessenberg matrices with minimal complexity. They are all constructedstarting from the vertices of Klein-Voronoi's continued fractions.In three-dimensional case of operators with a couple of complex conjugate eigenvectors wediscover the following phenomenon: Hessenberg matrices distinguish corresponding conjugacyclasses asymptotically. Notice that similar statement is no longer true for the case of operatorswith three real eigenvalues.
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Khintchine's and Jarnik's Diophantine results and theirextensions.Nikolay G. MoshchevitinMoscow State University, Russia.moshchevitin@rambler.ruIn 1926 A.Khintchine published his famous paper "�Uber eine klasse linear DiophantineApproximationen"where he �nd out the main phenomena of multi-dimensional linearDiophantine approximations. This paper includes results on
• aproximations with lacunary secuences;
• existence of so-called "singular systems";
• transference principles.General theory of multidimensional Diophantine appoximations was constructed byA.Khintchine and V.Jarnik in 1920 - 1950. It happened that many results by A.Khintcineand V.Jarnik were forgotten. I suppose to give a talk about some classical results and theirmodern extensions and generalizations. Particulary I consider the following topics:
• theory of singular systems, especially existence extremely singular matrices;
• the phenomena of degenerate dimension of the best approximations;
• Diophantine exponents and Diophantine inequalities;
• irregularities of distribution and inde�nity principles.In 1982 W.Schmidt formulated several important unsolved problems in Diophantineapproximations. Some of them were solved recently. One of the most impressive results is asolution of so-called "BADconjecture by D.Badziahin, A.Pollington and S.Velani. I intend tospeak about this wonderful result and its connection to the general theory of Diophantineapproximations.
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Picard groupoids and reciprocity laws on algebraic surface.Denis OsipovSteklov Mathematical Institute, Moscow.d osipov@mi.ras.ruIn case of a projective algebraic curve there are famous reciprocity laws for residues of adi�erential form and for the tame symbol of rational functions on the curve. The last reciprocitylaw is also called the Weil reciprocity law. These reciprocity laws are also connected with theGauss quadratic reciprocity law and the class �eld theory when the curve is de�ned over a �nite�eld.There is an intrinsic proof of the Weil reciprocity law. This proof is based on the fact that thecohomology groups of coherent sheaves on an projective algebraic curve are �nite-dimensionalvector spaces over the ground �eld. Such a proof was given by E. Arbarello, C. De Concini andV.G. Kac and followed after the proof of reciprocity law for residues of di�erential forms givenby J. Tate.For algebraic surfaces there are Parshin reciprocity laws for two-dimensional tamesymbols, [1]. These reciprocity laws are connected with two-dimensional class �eld theory.We give a new proof of these reciprocity laws, which has an intrinsic nature and uses adelicstructures on an algebraic surface.For this goal we construct a 2-category of torsors over arbitrary Picard groupoid. This 2-category is a 2-Picard groupoid. For any group we de�ne the notion of central extension of thisgroup by Picard groupoid. After that we de�ne the analogue of commutator map and study hisproperties in this central extension. The commutator map is de�ned for any three commutingelements of the group. When we apply these constructions to two-dimensional local �elds, wewill obtain the new expression for two-dimensional tame symbol, which leads to the new proofof Parshin reciprocity laws on an algebraic surface in the spirit of proof of Arbarello, De Conciniand Kac in case of an algebraic curve. We note that it was important for us to use non-strictlycommutative Picard groupoid of graded 1-dimensional vector spaces over a �eld.If we change a ground �eld to an Artinian local ring in these constructions, then thecommutator map which was described above will give the other maps used by A.N. Parshin forexplicit construction of two-dimensional local class �eld theory. Using our method, we obtainfor these maps the reciprocity laws, which are the part of two-dimensional global class �eldtheory. In particularly, the reciprocity laws for residue of a 2-di�erential form on an algebraicsurface are also obtained.This talk is based on joint results with Xinwen Zhu, [2].References[1] A.N. Parshin Class �elds and algebraic K-theory, Uspekhi Mat. Nauk 30 (1975), 253-254. Englishtranslation in Russian Math. Surveys.[2] D. Osipov, X. Zhu Categorical proof of Parshin reciprocity laws on algebraic surface, e-printarXiv:math/0111277.
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Î ïîäõîäÿùèõ äðîáÿõ ê öåïíûì äðîáÿì äî áëèæàéøåãî÷åòíîãî.Âëàäèìèð Ïàðóñíèêîâ1ÈÏÌ ÐÀÍ, Ðîññèÿ.polar@list.ruÂ ðàáîòå [1] èññëåäîâàëèñü ñâîéñòâà öåïíûõ äðîáåé äî áëèæàéøåãî ÷åòíîãî. Àëãîðèòìðàçëîæåíèÿ âåùåñòâåííîãî ÷èñëà α â íèõ ïîäîáåí àëãîðèòìó ðàçëîæåíèÿ â ïðàâèëüíóþöåïíóþ äðîáü, íî íà åãî øàãå ïðè îáðàùåíèè îñòàòêà ìåíÿåòñÿ çíàê, à âìåñòî âçÿòèÿáëèæàéøåãî öåëîãî áåðåòñÿ áëèæàéøåå ÷åòíîå ÷èñëî.Ðàöèîíàëüíûå ÷èñëà, äëÿ êîòîðûõ ñóììà èõ öåëî÷èñëåííûõ ÷èñëèòåëÿ p è çíàìåíàòåëÿ
q â íåñîêðàòèìîì ïðåäñòàâëåíèè p/q ÷åòíà, íàçîâåì íå÷åòíûìè ðàöèîíàëüíûìè ÷èñëàìè.Îñòàëüíûå ðàöèîíàëüíûå ÷èñëà íàçîâåì ÷åòíûìè. Ïîäõîäÿùèå äðîáè ê ÷åòíîé öåïíîéäðîáè ñóòü ÷åòíûå ðàöèîíàëüíûå ÷èñëà.Â [2] áûë ïðåäëîæåí óñêîðåííûé (êîðîòêèé) âàðèàíò àëãîðèòìà ðàçëîæåíèÿ â ÷åò-íóþ öåïíóþ äðîáü: ðÿä ïîâòîðÿþùèõñÿ øàãîâ çàìåíÿëñÿ êîìïîçèöèåé ñîîòâåòñòâóþùèõäðîáíî-ëèíåéíûõ ïðåîáðàçîâàíèé. Ñ n-ì øàãîì àëãîðèòìà òåïåðü ñâÿçûâàëàñü ïàðà ÷åò-íûõ ðàöèîíàëüíûõ ÷èñåë � ãëàâíàÿ qn =

q1,n
q2,n

è äîïîëíèòåëüíàÿ q′n =
q′1,n
q′2,n

ïîäõîäÿùàÿäðîáè ê êîðîòêîé ÷åòíîé öåïíîé äðîáè. Ñ÷èòàÿ äàëåå, ÷òî çíàìåíàòåëè ïîäõîäÿùèõ äðî-áåé â íåñîêðàòèìîì ïðåäñòàâëåíèè íåîòðèöàòåëüíû, âêëþ÷èì ïîäõîäÿùèå äðîáè â îäíóïîñëåäîâàòåëüíîñòü
{q′0, q0 , . . . q′n, qn , q′n+1, qn+1 , . . . }. (13)ÑïðàâåäëèâàÒåîðåìà. Â çàâèñèìîñòè îò òîãî, áóäåò ïîäõîäÿùàÿ äðîáü ê ïðàâèëüíîé öåïíîé äðî-áè ÷èñëà α ÷åòíûì èëè íå÷åòíûì ðàöèîíàëüíûì ÷èñëîì, îíà ëèáî âñòðåòèòñÿ â ïîñëå-äîâàòåëüíîñòè (13) äëÿ α, ëèáî ðàâíà îòíîøåíèþ ðàçíîñòåé ÷èñëèòåëåé è çíàìåíàòåëåéñîñåäíèõ ïîäõîäÿùèõ äðîáåé ýòîé ïîñëåäîâàòåëüíîñòè.ËÈÒÅÐÀÒÓÐÀ1. Ïàðóñíèêîâ Â.È. Öåïíûå äðîáè äî áëèæàéøåãî ÷åòíîãî // ÄÀÍ, 2009, ò. 429, ¹ 5, ñ.590-594.2. Ïàðóñíèêîâ Â.È. Öåïíûå äðîáè äî áëèæàéøåãî ÷åòíîãî. Êîðîòêèé âàðèàíò // Ïðå-ïðèíò N 88. Ì.: ÈÏÌ èì. Ì.Â.Êåëäûøà, 2008. 27 ñ.

1Ðàáîòà âûïîëíåíà ïðè ôèíàíñîâîé ïîääåðæêå Ðîññèéñêîãî ôîíäà ôóíäàìåíòàëüíûõ èññëåäîâàíèé(ïðîåêòû 09-01-00291, 08-01-00082) 139



Discrete Complex Re�ection Groups.Vladimir PopovSteklov Mathematical Institute, Russia.popovvl@mi.ras.ruLet k be either the �eld R of real numbers or the �eld C of complex numbers. Let V be a�nite dimensional vector space over k endowed with a positive de�nite inner product 〈 , 〉. Let Ebe an a�ne space over k with the space of translations V and the metric structure determinedby 〈 , 〉.De�nition 1. De�nition An a�ne isometry γ of E is called re�ection if its order is �nite andthe �xed point set Eγ is a hyperplane (i.e., codimk Eγ = 1).De�nition 2. De�nition A transformation group of E is called a re�ection group of E if it isdiscrete and generated by re�ections.The aim of this talk is to describe a complete classi�cation of re�ection groups Γ of E.If either k = R or k = C and Γ is �nite, such classi�cations are the well-known fundamentalclassical results due to E. Cartan, Witt, Coxeter (for k = R), see [1], and Shephard and Todd(for k = C), see [3]. Our contribution is the complete classi�cation of in�nite re�ections groupsfor k = C.In fact, we obtain more: as a byproduct of our approach we obtain, for k = C and every�nite re�ection group W of V (i.e., a group of Shephard and Todd), the complete classi�cationof W -invariant lattices T in V . These lattices are quite remarkable. In particular, the complextorus V/T is an abelian variety.Our approach is also applicable for classifying re�ection groups of a�ne spaces overquaternions and classifying lattices invariant with respect to �nite quaternionic re�ectiongroups. If time permits, I shall comment on this as well.References[1] N. Bourbaki, Groupes et Alg�ebres de Lie, Chap. IV�VI, Hermann, Paris, 1968[2] V. L. Popov, Discrete Complex Re�ection Groups, Communications of the Mathematical InstituteRijksuniverteit Utrecht, 1982, vol. 15 80 pp.[3] G. C. Shephard, J. A. Todd, Finite unitary re�ection groups, Canad. J. Math. 6, 1954, pp. 274�304
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Alternative algebras with hyperbolic unit loops 1Antonio Calixto de Souza FilhoUniversity of Sao Paolo, Brazil.acsouzafilho@usp.brWe investigate the structure of an alternative �nite dimensional Q-algebra A subject tothe condition that for some Z-order Γ ⊂ A, the loop of units of U(Γ) does not contain afree abelian subgroup of rank two. We also classify the RA-loops L for which ZL has thisproperty. The classi�cation for group rings is still an open problem. This de�nition is anextension of the notion of hyperbolic group de�ned by Gromov [2] via the Flat Plane Theorem[1, Corollary III.Γ.3.10.(2)]. We also prove that if an alternative �nite dimensional Q-algebrahas the hyperbolic property, then the radical of the algebra lies in its associator.Group rings ZG whose unit groups U(ZG) are hyperbolic were characterized in [5] in case Gis polycyclic-by-�nite. A similar question was considered for RG, R being the ring of algebraicintegers of K = Q(
√
−d) and G a �nite group (see [6]). In [3, 4], these results were extendedto associative algebras A of �nite dimension over the rational numbers containing a Z-order

Γ ⊂ A whose unit group U(Γ) is hyperbolic. An algebra A with this property is said to havethe hyperbolic property. Using these general results, the �nite semigroups S and the �eld
K = Q(

√
−d) such that KS has the hyperbolic property were classi�ed.In this talk, our approach is the same problem in the context of non-associative Q-algebras,in special those which are loop algebras.References[1] Bridson, M. R., Hae�iger, A. Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999.[2] Gromov, M. Hyperbolic Groups, in Essays in Group Theory, M. S. R. I. publ. 8, Springer, 1987,75-263.[3] Iwaki, E., Juriaans, S. O., Souza Filho, A. C. Hyperbolicity of Semigroup Algebras, Journal ofAlgebra, 319(12)(2008), 5000 − 50015.[4] Iwaki, E. Jespers, E., Juriaans, S. O., Souza Filho, A. C. Hyperbolicity of Semigroup Algebras II,Journal of Algebra and Its Applications, to appear.[5] Juriaans, S. O., Passi, I. B. S., Prasad, D. Hyperbolic Unit Groups, Proceedings of the AmericanMathematical Society, vol 133(2), 2005, pages 415-423.[6] Juriaans, S. O., Passi, I. B. S., Souza Filho, A. C. Hyperbolic Z-Orders and Quaternion Algebras,Proc. Indian Acad. Sci. (Math. Sci.) Vol. 119, No. 1, February 2009, pp. 1− 14.

1This is a joint work with Juriaans, S. O. and Polcino Milies, C.141



On a compacti�cation of moduli of vector bundles by treesof bubblings of the surface: arbitrary rank case.Nadezda V. TimofeevaYaroslavl State University, Russia.ntimofeeva@list.ruWe construct a non-classical algebro-geometric compacti�cation of the scheme of moduli ofGieseker � stable vector bundles with �xed Hilbert polynomial on a smooth projective algebraicsurface (S, L) over the �eld k = k̄ of zero characteristic. We consider the case of arbitrary rank.Families of locally free sheaves on the surface S are completed by locally free sheaves of somespecial type, on schemes which are certain modi�cations of S. This may be done by taking themodifications to be smooth irreducible surfaces obtained by so-called trees of bubblings of thesurface S.Gauge-theoretical approach to this project was provided for k = C by Nicholas Buchdahl[1, 2]. In his version the bubbling of the compact complex surface S at its point x means forminga (real) topological connected sum with projective plane S]P2 equipped with a suitable metric.The attachment is done so as the neck of the connected sum circles the point x. Bubblings canbe iterated. The process of consequent bubblings is described by consequent choice of points xand then can be displayed by the union of graphs of tree type.We provide the algebro-geometric approach to what was done by N. Buchdahl. The role ofbubbling is played by blowing up of reduced point on the surface S and the role of metric in theconstruction is played by ample divisor class. We prove that any stable rank r coherent sheaf Ecan be transformed in the certain procedure into the locally free sheaf Ẽ on the another surface
S̃. This surface is obtained from S by the tree of bubblings which depends on the initial sheaf
E. It is clear that this tree of bubblings is de�ned not uniquely. We describe the class of vectorbundles to appear in the construction and propose moduli functor for pairs ((S̃, L̃), Ẽ). Suchpair consists of bubble-tree-blown up surface S̃ with distinguished ample line bundle L̃ and oflocally free sheaf Ẽ of the class described. Coarse moduli space for this functor is a projectivealgebraic scheme. It is birational to Gieseker � Maruyama scheme.References[1] Nicholas P. Buchdahl. Sequences of stable bundles over compact complex surfaces. Journal ofGeom. Analysis, Vol. 9, No. 3, 1999, 391 � 428.[2] Nicholas P. Buchdahl. Blowups and gauge �elds. Paci�c Journal of Mathematics, Vol. 196, No. 1,2000, 69 � 111. This paper is available via http://nyjm.albany.edu:8000/PacJ/2000/196-1-4.html.
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Î ðàñïðåäåëåíèè ïðèâåäåííûõ áàçèñîâ â äâóìåðíûõöåëî÷èñëåííûõ ðåøåòêàõ.Àëåêñåé ÓñòèíîâÕàáàðîâñêîå îòäåëåíèå Èíñòèòóòà ïðèêëàäíîé ìàòåìàòèêè ÄÂÎ ÐÀÍ, Ðîññèÿ.ustinov@iam.khv.ruÏðèâåäåííûå áàçèñû ðåøåòîê èñïîëüçóþòñÿ ïðè ðåàëèçàöèè è àíàëèçå ðàçëè÷íûõ âû-÷èñëèòåëüíûõ àëãîðèòìîâ (áûñòðîå óìíîæåíèå òî÷åê íà ýëëèïòè÷åñêèõ êðèâûõ, ïðåäñêà-çàíèå ïîâåäåíèÿ ïñåâäîñëó÷àéíûõ ïîñëåäîâàòåëüíîñòåé è ò. ä.). Ïðè ýòîì ñëîæíîñòü èâðåìÿ ðàáîòû àëãîðèòìà çàâèñÿò îò ñâîéñòâ ïðèâåäåííîãî áàçèñà.Â äâóìåðíîì ñëó÷àå ðàñïðåäåëåíèå âåêòîðîâ ïðèâåäåííûõ (â ðàçëè÷íûõ íîðìàõ) áàçè-ñîâ ìîæíî îïèñàòü ÿâíî. Â ÷àñòíîñòè, ìîæíî íàéòè ïëîòíîñòü ðàñïðåäåëåíèÿ êðàò÷àéøèõâåêòîðîâ â äâóìåðíûõ öåëî÷èñëåííûõ ðåøåòêàõ è ïëîòíîñòü ðàñïðåäåëåíèÿ äëèíû âòîðî-ãî áàçèñíîãî âåêòîðà.Ðåçóëüòàò îñíîâàí íà ïðèìåíåíèè ãåîìåòðè÷åñêîé òåîðèè öåïíûõ äðîáåé è îöåíêàõñóìì Êëîñòåðìàíà. Îí òåñíî ñâÿçàí ñ ïîâåäåíèåì ÷èñåë Ôðîáåíèóñà îò òðåõ àðãóìåíòîâ.Äëÿ êîòîðûõ íåäàâíî áûëè äîêàçàíû ãèïîòåçû Äýéâèñîíà è Àðíîëüäà, êîòîðûå òàêæåáóäóò çàòðîíóòû â äîêëàäå.Ðàáîòà âûïîëíåíà ïðè ïîääåðæêå ãðàíòà Ïðåçèäåíòà ÐÔ No ÌÄ-2339.2010.1, ôîíäà�Äèíàñòèÿ�, ôîíäà ÐÔÔÈ, ãðàíòû No 09-01-12129 îôè-ì, 10-01-98001-ð-ñèáèðü-à, 09-01-00371-à, ïðîåêòà ÄÂÎ No 09-I-Ï4-03
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Section �Applications�Extended Strings: comparison of topological defects andsolitons.Igor BogolubskyJoint Institute of Nuclear Research, Dubna.bogolubs@jinr.ruPresently there exist growing interest to extended strings as simplest examples of (D+1)-dimensional nonlinear �eld solutions which could play crucial role in modern superstring theoriesas fundamental degrees of freedom. Well-known extended solutions with nontrivial topologybelongs to the wide class of so-called topological defects (TD's). Topological indices of TD�scan be calculated from their �eld distributions at D-dimensional outer boundary; the examplesof this kind are: 2D Abrikosov-Nielsen-Olesen (ANO) strings-vortices and 3D Polyakov-'t-Hoofthedgehogs-monopoles. An alternative possibility is to consider topological solitons (TS's), whichare found for uniform boundary conditions (contrary to TD's) at outer (space) boundary. Theirtopological indices are de�ned by the whole solution; the well-known example of such topologicalsolitons are 2D Belavin-Polyakov solutions and 3D Skyrme hedgehogs.The original part of the talk is planned to be the presentation of TS-analog of the ANOTD's, namely soliton strings-vortices in �the A3Mmodel� (the gauge-invariant nonlinear sigmamodel of the Heisenberg antiferromagnet with the "easy-axis"anisotropy, in which 3-componentscalar unit isovector �eld interacts minimally with the Maxwell �eld). This A3M model possessesboth Z(2) global symmetry and U(1) local symmetry which could be underlying reasons of thesurprising and physically appealing properties of stable 2D A3M topological solitons, which areplanned to be compared in the presentation - both with Belavin-Polyakov solutions, on onehand, and with the ANO topological defects, on the other hand.Finally search for classically stable 3D topological solitons in realistic Quantum FieldTheories (QFTs) will be shortly discussed, in particular for 3D topological solitons in bosonicsector of Weinberg-Salam theory of electroweak interactions.
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Power geometry as new mathematics.Alexander BrunoKeldysh Institute of Applied Mathematics, Moscow.abruno@keldysh.ruTraditional di�erential calculus is e�ective for linear and quasilinear problems. It is lesse�ective for essentially nonlinear problems. A linear problem is the �rst approximation to aquasilinear problem. The linear problem is usually solved by methods of Functional Analysis,then the solution to the quasilinear problem is found as a perturbation of the solution to thelinear problem. For an essentially nonlinear problem, we need to isolate its �rst approximations,to �nd their solutions, and to construct perturbations of these solutions. This is what PowerGeometry (PG) is aimed at. For equations and systems of equations (algebraic, ordinarydi�erential, and partial di�erential), PG allows to compute asymptotic forms of solutions aswell as asymptotic and local expansions of solutions at in�nity or at any singularity of theequation (including boundary layers and singular perturbations) [1].Algorithms of PG: (i) isolation of �rst approximations of the equations (via its polyhedron);(ii) simpli�cation of the �rst approximations by power and logarithmic transformations; (iii)solution of the simpli�ed equations; (iv) computation of expansions of solutions via successivelinear �rst approximations [2].Applications of PG: 1. Expansions of solutions to ODEs. 2. The same for Painleve equations.3. Periodic solutions to the Beletsky equation (oscullations of a satellite). 4. Motion of the rigidbody. 5. The boundary layer on a needle. 6. The restricted 3-body problem. 7. Integrability. 8.Evolution of turbulent �ow.Some references1. A.D. Bruno. Power Geometry in Algebraic and Di�erential Equations. Fizmatlit, Moscow,1998, 288 p. (Russian) = Elsevier Science, Amsterdam, 2000, 385 p. (English)2. A.D. Bruno. Asymptotics and expansions of solutions to an ordinary di�erential equation// Uspekhi Matem. Nauk 59:3 (2004) 31-80 (R) = Russian Mathem. Surveys 59:3 (2004) 429-480 (E)
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Delone-Hopf Triangulations in a 3-Sphere.Nikolai DolbilinSteklov Mathematical Institute, Moscow.dolbilin@mi.ras.ruMasaharu TanemuraInstitute of Statistical Mathematics, Japan.tanemura@ism.ac.jpLet X ⊂ S3 ⊂ E4 be a �nite point set on a standard 3-sphere and Del(X) a correspondingDelone triangulation Del(X) of the sphere S3. It is well-known that in this case Del(X) isisomorphic to the boundary ∂(conv(X)) of the convex hull conv(X). Namely, Del(X) coincideswith the central projection of ∂(conv(X)) onto S3.We call a Delone triangulation Del(X) a Delone-Hopf triangulation if the point set Xbelongs to the Hopf-Cli�ord torus T ⊂ S3, i.e. to the torus T := {(cosϕ, sinϕ, cosψ, sinψ), | 0 6

ϕ, ψ < 2π}. We study Delone-Hopf triangulations for sets X ⊂ T of two sorts.We present two main results. One is a very nice explicit description of a Delone-Hopftriangulation Del(X) when a point set X is a "periodic"set. The description is given in termsof the Klein polygon for lattices of rank 2. It uses geometry of continued fractions and basedon uneasy calculations and non-trivial geometric arguments.Another main result is computing a Delone-Hopf triangulation Del(X) for a random set
X ∈ T , i.e. when X is a point Poisson process on the Hopf torus. The computer simulationof Del(X) in this case gives a surprising phenomenon: the mean valency of vertices in Del(X)grows logarithmically as the cardinality N := |X| tends to in�nity.This empirical result looks even more surprisingly because it contrasts to that in a Delonetriangulation for X , where X is a random set on the whole 3-sphere, the valency of a"typical"vertex x ∈ X tends to the Meijering constant 48π2/35 + 2(= 15.53...). Thus, in arandom 4-polytope provided all its N vertices are randomly located on the Hopf torus thereare O(N logN) edges, in contrast to O(N) edges in Del(X) if X is a point-Poisson process onthe sphere S3.
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The Combinatorial, Contraction, and A�ne Types ofParallelohedra.Peter EngelUniversity of Berne, Switzerland.pengel@bluewin.chThe present state of the theory on Fedorov's parallelohedra is presented. New results aregiven on the enumeration of combinatorial, and a�ne types of primitive parallelohedra.Let Λd be a translation lattice in Euclidean space Ed with Gram matrix Q. We denote theDirichlet parallelohedron by
P(Q) := {x ∈ Ed | xtQx 6 (x− t)tQ(x− t), ∀t ∈ Λd}.It is a special kind of a Fedorov parallelohedron.The k-faces of a polytope P, are partially ordered with respect to inclusion. The k-faces of

P, together with the empty set {∅}, determine the face lattice L(P).De�nition 1. Two polytopes P and P′ are combinatorially equivalent, P′ comb
' P, and belong tothe same combinatorial type, if there exists a combinatorial isomorphism τ : L(P)→ L(P′).A zone of P is a set of parallel 1-faces of P. A zone Z is called closed if every 2-face of Pcontains either two edges of Z, or else none. Otherwise Z is called open. The edges of a zone

Z are collected into subsets SZ

j , j = 1, ..., s(Z) according to their length lj,l1 < l2 < · · · < ls(Z).Each subset contains a multiple of 2d edges. By zone contraction P↓, we understand the processof contracting every edge of a closed zone Z by the amount of its shortest edges SZ

1 [3]. Aparallelohedron Pc is said to be totally contracted if all its zones are open. A parallelohedron
Pm is maximal if it cannot be obtained by a zone contraction of any other parallelohedron. Thezone extension P

↑ is the inverse operation of zone contraction.Each maximal parallelohedron de�nes a complete zone-contraction lattice Z(Pm) bycontracting all combinations of closed zones. Each relatively, or totally zone-contractedparallelohedron Pc de�nes a zone-contraction family Ẑ(Pc).De�nition 2. Two parallelohedra P and P′ are contraction equivalent,P′ contr
' P, and belong tothe samecontraction type, ifi) there exists a face lattice isomorphism κ : Z(P)→ Z(P′);ii) there exists a combinatorial isomorphism for each P̃ ∈ Z(P), κ : P̃ 7→ P̃′ comb

' P̃.In dimensions d < 5, both classi�cations coincide.Still a �ner classi�cation of parallelohedra is given by a�ne equivalence. Let A = {aij} bea non-singular d× d matrix with real coe�cints aij.De�nition 3. Two polytopes P and P' are a�nely equivalent, P′ aff
' P, and belong to the samea�ne type, if there exists an a�ne mapping A : P′ = AP.Vorono�i [7] conjectured that every parallelohedron is a�nely equivalent to a Dirichletparallelohedron, and he proved it for primitive parallelohedra.We shall partition the open cone of positive de�nit quadratic forms C+, into connected opensubcones of equivalent types of parallelohedra

Φ+(P) = {Q ∈ C+ | P(Q) ' P}.For the determination of the equivalence of two parallelohedra we note that all P(Q) withina subcone of combinatorial type have identical face lattices. This allow us to construct relativeequivalence schemes. For combinatorial equivalence, the boundary of a subcone is give by the147



condition that at least d + 1 facets meet in the common vertex v ⊂ P. By writing down foreach facet the numbers of all subordinated vertices in increasing order, we obtain the relativepolytope scheme to characterize the combinatorial type. For contraction, and a�ne equivalence,additional boundaries of the corresponding subcone are given by the condition that for a zone
Z at least two subsets SZ

h, and SZ

k have equal length, lh = lk. By comparing for each zone Zi thelengths of each subset S
Zi

h with each other SZi

k we obtain a sequence of comparison operators
<,=, >, which determines the relative a�ne scheme. It holds that Φaff ⊆ Φcontr ⊆ ΦcombWe designed algorithms to determine the various kinds of subcones. To sum up the resultsof Fedorov [5], Delone [1], Shtogrin [6], and ours [2], [3], [4], we obtain:Theorem. In E2, there exist 2 combinatorial types of parallelogons, and in E3, there exist 5combinatorial types of parallelohedra. In E4, there exist 52 combinatorial types of paralllelohedrawhich belong to 2 zone-contraction families. In E5, there exist 179'372 contraction typesof parallelohedra which belong to 82 zone-contraction families. They belong to 103'769combinatorial types.Previous results in E6 show that there exist much more than 198'000'000 combinatorialtypes of primitive parallelohedra. We started to calculate subcones of a�ne types which, insome cases, prove to have a very complicated combinatorial structure.References[1] Delaunay (Delone) B.N. Sur la partition r�eguli�ere de l'espace �a 4 dimensions, Izvestiya AkademiiNauk SSSR Otdelenie Fiz-Mat Nauk, (1929) 79�110; ibid. 145�164.[2] Engel P. Investigations of parallelohedra in Rd, in Vorono�i's impact on modern Science, P. Engel,H. Syta, eds., Proc. Inst. Math. Acad. Sci. Ukraine, Vol. 21 (1998) 22�60.[3] Engel P. The contraction types of parallelohedra in R5. Acta Cryst., A 56 (2000) 491�496.[4] Engel P. On the subdivision of the domains of combinatorial types of parallelohedra in Rd, d ≥

5, into domains of contraction types, Trans. Ukrainean Math. Congress, Section Geometry andTopology, Kyiv, Inst. Math. Acad. Sci. Ukraine, (2003) 22�47.[5] Fedorov E.S. Nachala ucheniya o �gurah, Zapiski imperatorskago s.-PeterburgskagoMineralogicheskago Obshchestba 21 (1885) 1�279; Reprint: Akademii Nauk SSSR, 1953.[6] Shtogrin M.I. Regular Dirichlet-Vorono�i partitions for the second triclinic group, Proc. SteklovInst. Math., 123 (1973).[7] Vorono�i G.M., Nouvelles applications des param�etres continus �a la th�eorie des formesquadratiques. Deuxi�eme M�emoire. Recherches sur les parall�elo�edres primitifs. J. reine angew.Math. 134 (1908) 198�287, 135 (1909), 67�181.
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3D reconstructions of synaptic structures of centralneurous system using Delaunay partitionings1.Vladimir GaranzhaComputing Center RAS, Moscow.garan@ccas.ruReliable 3d reconstruction of synaptic structures of CNS using high resolution electronmicroscopy data is hard unsolved problem of modern biophysics and numerical geometry. Stateof the art technologies allow to obtain sections of the brain tissue with thickness up to 10nanometers, while spatial resolution for each slice (pixel size) can be as small as 2 nm. Thisresolution allows to view directly synapses or so-called postsynaptic densities (PSD) whichserve as a basic recognition patterns of a contact between axon and dendrite. Most PSD arelocated at special dendritic structures called dendritic spines. Manual detection and markingof PSD and dendritic spines on EM images is very time consuming and requires high level ofexpertise in neurobiology. Contours on the images still have to be detected manually. Fig. 3shows such sample image. Analysis, classi�cation, geometrical and topological description ofdendritic spines and PSDs is recognized as a powerful tool for investigation of the mechanismsof memory [1].
Fig. 3. Electron microscopy image ofbrain tissue sections, color marksdendritic spines. Fig. 4. Reconstruction of dendritefrom cross sections with simultaneousaligment of contours, multipledendritic spines are clearly visible.

Fig. 5. Direct comparison of reconstruction results: left - Trace algorithm, right - suggested algorithm.In order to reconstruct surfaces from contours on two consecutive cross sections we useconstrained planar Delaunay triangulation for a set of �at contours. Resulting triangulation ismapped into 3d space forming membrane-like surface spanning spatial contours [2]. Nice featureof this algorithm is that it allows to avoid topological errors when reconstructing branched1This is a joint work with A.I. Fedotov (Moscow Institute of Physics and Technology), L.N. Kudryavtseva(Moscow Institute of Physics and Technology), I. Patrushev (Institute of Cell Biophysics RAS, Puschino), R.V.Polozov (Institute of Theoretical and Experimental Biophysics RAS, Puschino), V.I. Popov (Institute of CellBiophysics RAS, Puschino). 149



con�gurations. Consecutive EM images can contain alignment uncertainty. In order to resolveit local alignment for all pairs of sections is applied which generally result in jagged surfacesshown in �g.4, left. To resolve this problem we construct transformations of section contoursvia discrete curvature functionals minimization for selected objects spanning geometrical scene.Such �smoothing� is illustrated in �g.4, center-right. As a basis set of objects one generallychooses a subset of mitohondria and axons.Currently neurobiologists use algorithm �Trace� [3] for image alignment and recostruction.It is well known that this algorithm is prone to geometrical and topological errors. Comparisonwith suggested algorithm is illustrated on Fig. 5Fig. 6 illustrates complexity of the problem. Preparation of data for geometrical scenecontaining fragment of neural network with several dendrites, axons and astrocites and hundredsof PSDs took several months.

Fig. 6. Fragment ofreconstructed brain tissue:dendrites, axons and astrocites.

Next step in our research should be computation of geodesicdistance matrices between di�erent PSD providing roughestimates for signal traveling times as well as constructionof 3d computational meshes for such scenes which is theprerequisite for numerical simulation of signal transmission,spill-over and di�usion of neuromediators. This meshingproblem is quite hard and requires new versions of existingmeshing algorithms.In order to attain reliable reconstruction of the surfacefeatures and estimation of discrete curvatures we developduality-based method which reconstructs simultaneously apair of locally polar polyhedra [4]. Fragments are shown in�g. 7. One should note that construction of dual polyhedra isquite hard problem which implies simultaneous optimizationof primal polyhedron and its iterative decomposition intoconvex and saddle subdomains.
Fig. 7. Dual polyhedral approximants forconvex and saddle surfaces. Fig. 8. Nonunique solution of reconstructionproblem.In order to construct 3d meshes we have developed special variant of Delaunay partitioningtechnique in implicit domains de�ned by non-smooth implicit function. This technique allows forautomatic sharpening of boundary edges without their explicit detection. It allows to construct3d meshes directly from the set of cross sections and in general from combination of analyticalde�nition with a �soup� of points, segments and faces. Fig. 8 illustrates how this technique doesthe task of simultaneous meshing and reconstruction. The set of sections assumes the presenceof oblique cut, however both implicit function reconstruction and 2.5d Delaunay triangulationbased reconstruction result in multiple bridges/tunnels. In order to resolve this problem we havedeveloped a preliminary version of reconstructor based on special control vector �elds partiallyaligned with oblique cuts, see �g. 8, right. However formalization of biological requirements forreconstruction still provides considerable di�culties. This work is partially supported by RFBR150



grant o�_m 09-01-12106.[1]Popov V.I., Medvedev N.I., Patrushev I.V., et al., Neuroscience. 2007. V.149. N.3. P.549.[2]Wang D, Hassan O., Morgan K., Weatherill N. Efï¬�cient surface reconstruction fromcontours based on two-dimensional Delaunay triangulation // Int. J. Numer. Meth. Engng.2006. V.65. P.734â��751.[3]Fiala J.C., Harris K.M. J. Am. Med. Inform. Assoc. 2001. V.8. N.1. P.103.[4]Garanzha V.A. Discrete extrinsic curvatures and approximation of surfaces by polarpolyhedra // Zh. Vych. Mat. Mat. Fiz. 2010. V.50. N.1. P.71-98.
Î ãåîìåòðèè ñèñòåìû òî÷åê Äåëîíå-Àëåêñàíäðîâà.Alexey GurinB.Verkin Institute for Low Temperature Physics and Engineering, Ukraine.alexgu101@ya.ruÈíòåðåñóþùàÿ íàñ ñèñòåìà òî÷åê Äåëîíå-Àëåêñàíäðîâà ñóòü ñèñòåìà öåíòðîâ ðàâ-íûõ øàðîâ, îáðàçóþùèõ óïàêîâêó. Ïîýòîìó çàäà÷à Êåïëåðà, íàõîæäåíèÿ ïëîòíåéøåéóïàêîâêè ðàâíûõ øàðîâ, èìååò àíàëîãè÷íóþ ôîðìóëèðîâêó äëÿ ñèñòåìû òî÷åê Äåëîíå-Àëåêñàíäðîâà. Èíòðåðåñ ê ïðîáëåìå Êåïëåðà óêðåïèëñÿ ïîñëå âêëþ÷åíèÿ åå â ÷èñëî âàæ-íåéøèõ ïðîáëåì Ä.Ãèëüáåðòîì. Ðåøåíèå ïðîáëåìû Êåïëåðà, äàæå ïîñëå ïîÿâèâøèõñÿïóáëèêàöèé, ïðåòåíäóþùèõ íà èñ÷åðïûâàþùåå ðåøåíèå ïðîáëåìû, îñòàåòüñÿ òðóäíîé çà-äà÷åé, òàê êàê èçó÷åíèå ïëîòíûõ óïàêîâîê íå äàëî íîâîãî âûâîäà î ïëîòíûõ óïàêîâêàõ,êðîìå âûâîäà Êåïëåðà. Ïëîòíåéøàÿ óïàêîâêà Êåïëåðà, èçâåñòíàÿ ñåé÷àñ êàê ãðàíåöåíòðè-ðîâàííàÿ ïëîòíåéøàÿ óïàêîâêà ðàâíûõ øàðîâ, îäíîçíà÷íî õàðàêòåðèçóåòñÿ ñâîåé åäèí-ñòâåííîé îáëàñòüþ Âîðîíîãî è äâóìÿ ïîëèýäðàìè Äåëîíå. Ìû ïðåäëàãàåì îáîáùåííûéàëãîðèòì Êîêñåòåðà íàðóøåíèÿ ïîðÿäêà ðàñïîëîæåíèÿ òî÷åê ïî ñïîñîáó ãðàíåöåíòðèðî-âàííîãî êóáè÷åñêîãî êðèñòàëëà. Äàííûé àëãîðèòì ãåíåðèðóåò ãîìîëîãè÷åñêèé ðÿä ïî-÷òè ïåðèîäè÷åñêèõ(ïî÷òè êðèñòàëëîãðàôè÷åñêèõ) ñïîñîáîâ ðàñïîëîæåíèÿ òî÷åê Äåëîíå-Àëåêñàíäðîâà â òðåõìåðíîì åâêëèäîâîì ïðîñòðàíñòâå. Ïðè ìàëîì ïàðàìåòðå àëãîðèòìàÊîêñåòåðà íàéäåí ïîëíûé ñïèñîò ïóñòîò Äåëîíå è îáëàñòåé Âîðîíîãî ìîäåëè.
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The estimation of gradient approximation on Delaunaytriangulation.Vladimir KlaychinVolgograd State University, Volgograd.klchnv@mail.ruAlexander ShirokiyVolgograd State University, Volgograd.mhwide@hotmail.com1. Desingate the convex hull of k + 1 points pi, i = 0, ..., k 6 n such as vectors p1 − p0, p2 −
p0, ..., pk − p0 are linearly independent as k-dimensional simplex S in Rn.Suppose D ⊂ Rn, n > 1 is a domain, which has a de�ned sequence {Pm} of �nite setsof points. Let's examine the triangulation Tm for each of these sets. We mean the set {S} of
n-dimensional simplexes S as the triangulation of set of points, such as:1) Each point pi ∈ Pm of the de�ned set is a vertex of one of the simplexes S;2) Each vertex of any simplex S is one of the points {pi} ∈ Pm;3) Interiority of intersection of any two simplexes is empty;4) There is the only one simplex S, which satis�es the conditions 1) � 3).The triangulation of points set is the Delaunay triangulation (see [1], [2]), if the circumsphereof each simplex of triangulation contains none of points of this set.Let's call the triangulation as acute, if all of its angles between any pair of its adjacent
k-dimensional faces are acute for each simplex.It's easy to verify, that any acute triangulation is the Delaunay triangulation.For each simplex S ∈ Tm let's de�ne the length of its maximum side dS. Let's assume

dm = max
S∈Tm

dS.We'll examine such sets of points Pm and their triangulations Tm, which satisfy the followingconditions:
dm → 0 when m→∞. (14)

∀ε > 0 ∃m0 ∈ N : ∀m > m0 and ∀x ∈ D ∃a ∈ Pm such that |a− x| < ε. (15)The second condition means that Pm is an ε-net for all su�ciently great m. Let's examinea function f(x), x ∈ D belonging to the class C1(D). For the de�ned triangulation T in thedomain D let's build up a piecewise a�ne function fT (x) such that
fT (a) = f(a), for any vertex a of triangulation T.It's easy to prove, that when the conditions (14) and (15) are satis�ed, the sequence fT (x)converge uniformly to function f(x) on every compact subset U ⊂ D. This paper studies thepossibilities of the Delaunay triangulation for the approximation of the gradient of the function

f(x) by the gradient of fT (x) and also investigates admissible generalizations.2. The following theorem gives a quantitative characteristic of the approximation propertyof the Delaunay triangulation. It is necessary to note, that the properties (14) and (15) oftriangulations Tm are not enough to get such estimates. This fact is demonstrated by theclassical Schwartz's example (see [3]), where the square of the side surface of quadric cylinderis calculated. We proved the following result: 152



Theorem 1. Suppose the Delaunay triangulation T of some ε-net of plain domain D ⊂ R2is de�ned, which satis�es the condition (15). Then for any compactly embedded subset U ⊂⊂ Dthe following estimate is correct:
max

S∈T,S⊂U
max
x∈S
|∇f(x)−∇fT (x)| 6 max

U
max

16i,j62

∣∣∣∣
∂2f(x)

∂xi∂xj

∣∣∣∣ (4 + 5
√
2)ε.In case n = 3 an analogical result can be obtained only for much stricter triangulation classthan the Delaunay triangulation. There is theTheorem 2. Suppose T is an acute triangulation of some ε-net in the domain D ⊂ R3,which satis�es the condition (15). Then for a function f(x) ∈ C2(D), x ∈ D and for a compactlyembedded subset U ⊂⊂ D the following estimate is correct:

sup
S∈T,S⊂U

sup
x∈S
|∇f(x)−∇fT (x)| 6 max

U
max

16i,j63

∣∣∣∣
∂2f(x)

∂xi∂xj

∣∣∣∣ (3 + 9
√
3)ε.

References[1] Delaunay B. N. Sur la sphere vide. A la memoire de Georges Vorono¿ // Èçâåñòèÿ ÀÍ ÑÑÑÐ.� 1934. ¹ 6. � Ñ. 793 � 800 // Ïåðåâîä ñ ôð. À. Þ. Èãóìíîâ â ñá. Çàïèñêè ñåìèíàðà �Ñâåðõ-ìåäëåííûå ïðîöåññû�. Âûïóñê 1. � Âîëãîãðàä: Èçä-âî ÂîëÃÓ, 2008. � C. 147 � 153.[2] Ñêâîðöîâ À. Â., Ìèðçà Í. Ñ. Àëãîðèòìû ïîñòðîåíèÿ è àíàëèçà òðèàíãóëÿöèè. � Òîìñê:Èçä-âî Òîìñêîãî óí-òà, 2006. � 168 ñ.[3] Ãåëáàóì Á., Îëìñòåä Äæ. Êîíòðïðèìåðû â àíàëèçå. � Âîëãîãðàä: Èçä-âî Ïëàòîí, 1997. �251 ñ.
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Adiabatic limits and problems of distribution of integerpoints1Yuri KordyukovInstitute of Mathematics RAS, Ufa.ykordyukov@yahoo.com1. Adiabatic limits. Let (M,F) be a closed foliated manifold equipped with a Riemannianmetric g. So we have a decomposition of the tangent bundle TM of M into a direct sum
TM = TF⊕TF⊥, where TF is the tangent bundle of F and TF⊥ is the orthogonal complementof TF . Accordingly, the metric g can be written as a g = gF + gH of the tangential component
gF and the transversal component gH . De�ne a one-parameter family gε of Riemannian metricson M by the formula

gε = gF + ε−2gH , ε > 0.For any ε > 0, consider the Laplace-Beltrami operator ∆ε onM determined by gε. Its spectrumis a countable set of eigenvalues with �nite multiplicity 0 6 λ0(ε) 6 λ1(ε) 6 . . . such that
λj(ε)→ +∞ when j →∞. Let us de�ne the eigenvalue distribution function of ∆ε by

Nε(λ) = ]{i : λi(ε) 6 λ}, λ ∈ R.In the case when F is a Riemannian foliation and g is a bundle-like metric, we proved anasymptotic formula for Nε(λ) when ε→ 0 (see [1]).Following Witten, the limit ε→ 0 is called adiabatic limit.2. Distribution of integer points. Let F be a p-dimensional linear subspace of Rn and
H = F⊥ the orthogonal complement of F with respect to the standard Euclidean metric in Rn.For any ε > 0, we de�ne a linear transformation Tε : Rn → Rn by the formula

Tε(x) =

{
x, if x ∈ F,
ε−1x, if x ∈ H.For any bounded domain S in Rn, denote

nε(S) = #(Tε(S) ∩ Zn), ε > 0.We are interested in the asymptotic behavior of nε(S) when ε→ 0.3. Relation with adiabatic limits. The problems mentioned above are related as follows.As above, let F be a p-dimensional linear subspace of Rn. Consider the n-dimensional torus
Tn = Rn/Zn and the linear foliation F on Tn determined by F : the leaf Lx of F through x ∈ Tnhas the form

Lx = x+ F mod Zn.Let g be the standard �at metric on Tn, and let gε be the family of Riemannian metrics on Tn,which determines the adiabatic limit.Denote by Br(0) the ball in Rn of radius r centered at the origin. For any λ > 0, thenumber nε(B√
λ(0)) of integer points in the ellipsoid Tε(B√

λ(0)) is related with the eigenvaluedistribution function Nε(λ) of the Laplace-Beltrami operator ∆ε associated with gε by theformula
nε(B√

λ(0)) = Nε(4π
2λ).1Supported by the Russian Foundation of Basic Research (grant no. 09-01-00389)154



In particular, the general results on adiabatic limits for Riemannian foliations mentioned aboveimply an asymptotic formula for nε(S) as ε→ 0 in the case when S = B√
λ(0).4. The results. First, we prove an asymptotic formula for nε(S) when ε → 0 in thecase when S is an arbitrary bounded domain in Rn with smooth boundary. Next, undersome additional assumptions on S, we state a re�ned remainder estimate in the asymptoticformula for nε(S). Finally, using these results, we obtain more precise remainder estimates inthe asymptotic formula for the eigenvalue distribution function Nε(λ) of the Laplace-Beltramioperator ∆ε in adiabatic limit for the particular case of the linear foliation on the torus.This is joint work with A.A. Yakovlev (see [2]).References[1] Kordyukov Yu. A., Adiabatic limits and spectral geometry of foliations, Math. Ann. 313 (1999),763�783.[2] Kordyukov Yu. A., Yakovlev A., Integer points in domains and adiabatic limits, preprintarXiv:1006.4977, 2010.
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Ìíîãîñëîéíàÿ ìîäåëü â îïòèêå. Íîâûå àíàëèòè÷åñêèåðåçóëüòàòû.Ìèõàèë ÊîâàëåâÌÃÒÓ èì. Áàóìàíà, Ìîñêâà.mkov@rambler.ruÎäíîé èç êëàññè÷åñêèõ çàäà÷ îïòèêè ÿâëÿåòñÿ àíàëèç ðàñïðîñòðàíåíèÿ ñâåòà â ñëî-èñòîé ñðåäå [1]. Ìû ðàññìîòðèì ïëîñêèé âîëíîâîä, ïðåäñòàâëÿþùèé ñîáîé ñîâîêóïíîñòü
m > 2 ñëî¸â äèýëåêòðèêîâ ñ ïîêàçàòåëÿìè ïðåëîìëåíèÿ nj, 1 6 j 6 m. Ïóñòü â êðàéíèõñëîÿõ áåñêîíå÷íîé òîëùèíû n1 > nm. À ñðåäè âíóòðåííèõ ñëî¸â èìååòñÿ ñëîé ñ ïîêàçà-òåëåì ïðåëîìëåíèÿ áîëüøèì n1. Êàê èçâåñòíî [1, 2], ñóùåñòâóåò äâà òèïà ýëåêòðîìàãíèò-íûõ âîëí â âîëíîâîäå: ÒÅ- è ÒÌ-âîëíû. Åñëè ñ÷èòàòü ñëîè ïåðïåíäèêóëÿðíûìè îñè Ox,à âîëíû ðàñïðîñòðàíÿþùèìèñÿ âäîëü îñè Oz, òî â j-îì ñëîå óðàâíåíèå äëÿ � àìïëèòó-äû ñîñòàâëÿþùåé Ey(x) âåêòîðà ýëåêòðè÷åñêîé íàïðÿæ¸ííîñòè ãàðìîíè÷åñêîé ÒÅ-âîëíûçàïèñûâàåòñÿ [2] òàê

c2

ω2

d2Ey
dx2

+ n2
jEy = β2Ey,ãäå β � ýôôåêòèâíûé ïîêàçàòåëü ïðåëîìëåíèÿ âîëíîâîäà (ïîñòîÿííàÿ ðàñïðîñòðàíåíèÿâîëíû), ω � ÷àñòîòà âîëíû, c � ñêîðîñòü ñâåòà â âàêóóìå. Â êàæäîì ñëîå ðåøåíèå ýòî-ãî óðàâíåíèÿ åñòü ëèáî ëèíåéíàÿ êîìáèíàöèÿ ñèíóñîèäû è êîñèíóñîèäû, ëèáî ëèíåéíàÿêîìáèíàöèÿ äâóõ ýêñïîíåíò â çàâèñèìîñòè îò çíàêà âåëè÷èíû β2−n2

j . Íà ãðàíè÷íûõ ïëîñ-êîñòÿõ ñëî¸â ðåøåíèÿ ñøèâàþòñÿ ïî óñëîâèÿì íåïðåðûâíîñòè âåëè÷èí Ey è dEy

dx
. Åñëè ïðèíåêîòîðîì çíà÷åíèè β ïîëó÷àåòñÿ ðåøåíèå, ó êîòîðîãî â êðàéíèõ áåñêîíå÷íûõ ñëîÿõ ïîëåýêñïîíåíöèàëüíî óáûâàåò íà áåñêîíå÷íîñòè, òî ýòî çíà÷åíèå ïîñòîÿííîé ðàñïðîñòðàíåíèÿ

β íàçûâàåòñÿ ñîáñòâåííûì, à ñîîòâåòñòâóþùåå ðåøåíèå � ñîáñòâåííîé ÒÅ-ìîäîé âîëíî-âîäà. Íàõîæäåíèå ñîáñòâåííûõ ìîä ÿâëÿåòñÿ îäíîé èç îñíîâíûõ çàäà÷ òåîðèè âîëíîâîäîâ.Èçâåñòíûå óðàâíåíèÿ äëÿ íàõîæäåíèÿ ñîáñòâåííûõ çíà÷åíèé β (èõ íàçûâàþò äèñïåð-ñèîííûìè) ñ òðóäîì ïîääàþòñÿ àíàëèçó è ðåøåíèþ ïðè ÷èñëå ñëî¸â âîëíîâîäà áîëüøåì÷åòûð¸õ. Ïîýòîìó áûëè ðàçâèòû âåñüìà ýôôåêòèâíûå ÷èñëåííûå ìåòîäû ðåøåíèÿ çà-äà÷è. Îäíàêî, ÷èñëåííûå ìåòîäû íå ìîãóò äàòü ðåçóëüòàòîâ êà÷åñòâåííîãî õàðàêòåðà.Àâòîðîì áûëà ïðåäëîæåíà íîâàÿ ôîðìà äèñïåðñèîííîãî óðàâíåíèÿ, êîòîðóþ îí íàçâàëìíîãîñëîéíûì óðàâíåíèåì [3, 4]. Ìíîãîñëîéíîå óðàâíåíèå îáëàäàåò ðÿäîì ïðåèìóùåñòâïåðåä èçâåñòíûìè äèñïåðñèîííûìè óðàâíåíèÿìè. Ñ ïîìîùüþ íåñëîæíîé ïðîãðàììû, ðå-àëèçîâàííîé íà ïåðñîíàëüíîì êîìïüþòåðå, åãî ìîæíî èíäóêòèâíî âûïèñûâàòü è ðåøàòüäëÿ âîëíîâîäîâ, ñîäåðæàùèõ, âî âñÿêîì ñëó÷àå, äî äâóõ äåñÿòêîâ ñëî¸â.Â îòëè÷èå îò èçâåñòíûõ äèñïåðñèîííûõ óðàâíåíèé ìíîãîñëîéíîå óðàâíåíèå äîâîëüíîëåãêî ïîääà¸òñÿ ìàòåìàòè÷åñêîìó àíàëèçó. Ïóò¸ì åãî àíàëèçà àâòîðîì áûëè ïîëó÷åíû [5]òî÷íûå è ýôôåêòèâíûå ôîðìóëû äëÿ ÷èñëà ñîáñòâåííûõ ýëåêòðîìàãíèòíûõ ÒÅ- è ÒÌ-ìîä â ïðîèçâîëüíûõ ïëîñêèõ äèýëåêòðè÷åñêèõ âîëíîâîäàõ. Ïðè÷¸ì, ýòà çàäà÷à ñâåëàñü êãåîìåòðè÷åñêîé çàäà÷å ïîäñ÷¸òà ïîâîðîòà ãîäîãðàôà íåêîòîðîé âåêòîð-ôóíêöèè âîêðóãíà÷àëà êîîðäèíàò â ïëîñêîñòè. Ïîäñ÷¸ò ÷èñëà ìîä äëÿ âîëíîâîäîâ, ñîäåðæàùèõ äåñÿòêèñëî¸â, ñ ïîìîùüþ ýòèõ ôîðìóë íà ïåðñîíàëüíîì êîìïüþòåðå ïðîèñõîäèò ïðàêòè÷åñêèìãíîâåííî.Èç ïîëó÷åííûõ ôîðìóë âûòåêàåò ñëåäóþùàÿ òåîðåìà. Ïóñòü ïîêàçàòåëè ïðåëîìëåíèÿñëî¸â ÷åðåäóÿñü ïðèíèìàþò äâà çíà÷åíèÿ: n1 < n2, à òîëùèíû âíóòðåííèõ ñëî¸â ÷åðåäóÿñüïðèíèìàþò çíà÷åíèÿ u è v. 156



ÒÅÎÐÅÌÀ. Êàêîâû áû íè áûëè âåëè÷èíû u, v, n1 < n2 , ïðè íåîãðàíè÷åííîì ðîñòå÷èñëà ñëîåâ âîëíîâîäà ÷èñëî ñîáñòâåííûõ ÒÅ è ÒÌ-ìîä â íåì òàêæå íåîãðàíè÷åííî ðàñ-òåò.References[1] Ë.Ì.Áðåõîâñêèõ . Âîëíû â ñëîèñòûõ ñðåäàõ. Ì., Íàóêà, 1973, 343 Ñ.[2] Ì.Áîðí, Ý.Âîëüô. Îñíîâû îïòèêè. Ì., Íàóêà, 1970, 855 Ñ.[3] Êîâàëåâ Ì.Ä.. Ìíîãîñëîéíîå óðàâíåíèå. ×åáûøåâñêèé ñáîðíèê. Ò. 7. âûï. 2 (18). Òóëà 2006.Ñ.99�105.[4] Ìàéåð À.À., Êîâàëåâ Ì.Ä.. Äèñïåðñèîííîå óðàâíåíèå äëÿ ñîáñòâåííûõ çíà÷åíèé ýôôåêòèâ-íîãî ïîêàçàòåëÿ ïðåëîìëåíèÿ â ìíîãîñëîéíîé âîëíîâîäíîé ñòðóêòóðå. ÄÀÍ, 2006, ò. 407, �6,Ñ. 766�769.[5] Êîâàëåâ Ì.Ä. , Î ÷èñëå ÒÅ- è ÒÌ-ìîä â ïëîñêîì ìíîãîñëîéíîì âîëíîâîäå. Òðóäû ÐÍÒÎÐÝÑèì. À.Ñ. Ïîïîâà. Âûïóñê: 3. Äîêëàäû 3-åé Ìåæäóíàðîäíîé êîíôåðåíöèè Àêóñòîîïòè÷åñêèåè ðàäèîëîêàöèîííûå ìåòîäû èçìåðåíèé è îáðàáîòêè èíôîðìàöèè, Ñóçäàëü, 22-24 ñåíòÿáðÿ2009 ã. Ñ.171 � 174.
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Tube method � An integral-geometric approach tostatistical distribution theory1.Satoshi KurikiThe Institute of Statistical Mathematics, Japan.kuriki@ism.ac.jpLet X(p), p ∈M , be a real-valued Gaussian random �eld de�ned on a �nitely dimensionalindex set M with mean 0 and variance 1. Consider approximating upper tail probability of themaximum of X(p) over M ,
P (c) = Pr

(
supp∈MX(p) ≥ c

)
. (1)Here we restrict our attention to a class of random �elds of the form

X(p) = 〈p, ξ〉, p ∈M ⊂ Sd−1, (2)where ξ = (ξ1, . . . , ξd) is a random vector consisting of independent standard Gaussian randomvariables, and Sd−1 is the set of unit vectors in Rd. This is a canonical presentation of Gaussian�elds with �nite dimensional covariance functions. Although this is a restricted class of Gaussian�elds, this covers a wide range of distributions appearing in multivariate analysis.The set of points in Sd−1 whose geodesic distance fromM is less than or equal to θ is calledthe tube around M with radius θ, and is denoted by Tube(M, θ). Write d − 1 dimensionalvolume of the tube as
V (θ) = Vold−1(Tube(M, θ)).The relation between P (·) and V (·) is essentially the Laplace transform and its inversion. Thisimplies that the asymptotic behaviors of P (a) as a ↑ ∞ and V (θ) as θ ↓ 0 are determined byeach other. The basic strategy of the tube method is to evaluate V (θ) for θ small �rst, andthen to obtain P (c) for c large by the Laplace transform.If M is a piecewise-smooth submanifold of Sd−1, then the volume V (θ) can be evaluated bymeans of integral-geometric approaches. In particular, whenM is a closed Riemannan manifold,the volume formula is described in terms of Weyl's geometric quantities or Lipschitz-Killingcurvatures (Weyl's tube formula) ([5]).For the purpose of approximating the probability (1), another method referred to as Eulercharacteristics heuristic (EC heuristic) is known. In this method, the expectation of Eulercharacteristic of a excursion set, E [χ{p ∈M | X(p) ≥ c}], is used as an approximation to (1).For the class of Gaussian �elds (2), it can be proved that the EC heuristic is essentially thesame as the tube method by extending Morse's theory ([1], [6]).Let K ⊂ Rd be the cone with the base set M . Then, M = K ∩ Sd−1, and maxpX(p) ∨ 0is the length of orthogonal projection of ξ onto the cone K in Rd. For various cones K thatare statistically interesting, the volume formula V (θ) and the upper probability F (c) can beobtained explicitly. The following are typical examples:(i) K = {h1⊗h2 | hi ∈ Sdi−1}, where ⊗ is the Kronecker product. The maximummaxpX(p)is stochastically equal to the square root of the largest eigenvalue of a d1 × d1 Wishart matrixwith d2 degrees of freedom ([4]).(ii) K = {(h1 ⊗ h2 − h2 ⊗ h1)/
√
2 | H = (h1, h2) ∈ V2,d}, where V2,d is a Stiefel manifold.The maximum maxpX(p) is stochastically equal to the largest singular value of d × d skewsymmetric Gaussian random matrix ([2]).1Joint work with Akimichi Takemura (Univ. of Tokyo) and Naohiro Kato (Graduate Univ. for AdvancedScience). 158



(iii) K = {h⊗k | h ∈ Sd−1}. The distribution of maxpX(p) is equivalent to the limitingdistribution of the sample k-th cumulant ([4]).(iv) Let z ∼ Nd(µ, Id). Based on the observation z, consider a statistical hypothesis testingfor a null hypothesis H0 : µ = 0 against H1 : µ ∈ K, where K is a cone in Rd. Then, the nulldistribution of the likelihood ratio test is the distribution of (maxpX(p) ∨ 0)2. The followingcones are interesting in this context:
K = {(µi) ∈ Rd | µ1 ≤ · · · ≤ µd} (simple order cone),
K = {A ∈ Rd×d | A � 0} (cone of positive semide�nite matrices, [3]),
K =

{
(ci) ∈ Rd |∑i cix

i−1 ≥ 0, ∀x ∈ [a, b]
}

(cone of positive polynomials).The obtained formulas for the upper tail probability (1) are very accurate when c ismoderately large, at least, and are practical enough for the purpose of calculating p-valuesin testing statistical hypotheses.References[1] Adler, R. J. and Taylor, J. E. (2007). Random Fields and their Geometry . Springer.[2] Kuriki, S. (2010). Distributions of the largest singular values of skew-symmetric random matricesand their applications to paired comparisons. Comm. Statist. Theory Methods, 39, 1522�1535.[3] Kuriki, S. and Takemura, A. (2000). Some geometry of the cone of nonnegative de�nite matricesand weights of associated χ̄2 distribution. Ann. Inst. Statist. Math., 52, 1�14.[4] Kuriki, S. and Takemura, A. (2001). Tail probabilities of the maxima of multilinear forms andtheir applications. Ann. Statist., 29, 328�371.[5] Kuriki, S. and Takemura, A. (2009). Volume of tubes and the distribution of the maximum of aGaussian random �eld. Selected Papers on Probability and Statistics, AMS Translations Series 2,Vol. 227, No. 2, 25�48.http://www.ism.ac.jp/�kuriki/paper/kuriki-takemura-2009-ams.pdf[6] Takemura,A. and Kuriki, S. (2002). On the equivalence of the tube and Euler characteristicmethods for the distribution of the maximum of Gaussian �elds over piecewise smooth domains.Ann. Appl. Probab., 12, 768�796.
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About de�nition of singular transformation byN.V. E�mov.Alexander LozhkinIzhevsk State Technical University, Izhevsk.lag@istu.ruAbstract. The base of informatics-linguistic interpretation of applied geometry is produced brie�y.An author of this article goes in precision of geometrical models in CAD/CAM. Points ofellipses crossing is a need to compute for few of geometrical model of machine-building goods.Let are two ellipses E1 ≡< x1, y1, a1, b1, ϕ1 > and E2 ≡< x2, y2, a2, b2, ϕ2 >, when centersof ellipse (xj , yj) ∈ R × R, semiaxes and tilt angle aj , bj , ϕj ∈ R, j ∈ {1, 2}, ϕj ∈ [−π, π].Ellipses may be representing in quadratic form cjx
2 + 2djxy + ejy

2 + njx+ kjy + lj = 0, when
cj , dj, ej, nj, kj, lj ∈ R. The task comes to solving of equation of four powers. There equationsare �nding with Descartes-Euler and Cardano-Tartaglia methods one after another. In mostcases the solutions are receive with complex component xj = rj + isj , when rj , sj ∈ R, j ∈ Z+.Sometimes a value of complex component sj congruent with rj . Therefore, an author wantedto �nd a solution without complex number.Method of transformations chain is existed in applied geometry. This method allowsbreaking matrix of unrestricted linear transformation to sequence of name conversions. Chain oftransformations of ellipses cross point was founded. One of transformation is shear conversion.Classic method of �nding of transformation parameters of quadratic form obtain coe�cients
kx and ky in proper basis [1]. Basis depend on proper angle of quadratic form α. The parametersis �nd in series: α, kx and ky. N.V. E�mov [1, p. 128] was quote that transformation (

1 1
0 1

)is not have a proper basis. De�nition of transformations chain is not possible by classic means.The research was moved in orthonormal basis for quadratic form with canonic equation.The representation of ellipse was selected by parametric equations set. Canonic equationof ellipse x2

a2
+ y2

b2
= 1 have parametric equations set {

x = a cos t
y = b sin t

. Author's student wasalighted an approach to �nding of parameters of arbitrary linear transformation of ellipseby additional angle β [2, p. 50]. Method get parameters of transform ellipse by solutionof parametric equations set: { R(kxfx(t), α) = aR(fx(t), β) + hR(fy(t), β)
R(kyfy(t), α) = gR(fx(t), β) + bR(fy(t), β)

, when R(f, ϕ) �rotation transformation.Method is work the linear-independed transformations the singular conversions. Theoreticalfoundation of this is next to E�mov de�nition of singular transformation. He writes [1, p. 94]:singular transformation convert the plane to line. On this base was set a hypothesis ofpreservation of permutation symmetry (
0 1
1 0

) for any re�ection on plane [2]. Next stepin our research is problem what contradict to store permutation symmetry. Cartesian productis solved this issue from set theory and relational algebra. There foundations were resulted tableof binary symmetry of Euclidean plane.Developing the Leibniz statement about special space relationships (automorphisms), H.Weil proposed the table of symmetries [3]. The table is de�nite symmetries on plane and space.The translational symmetry extract particularly. She was not included in the table.Considering the axiomatics of Euclidian plane, Diuedonne [4] determines two types of thesymmetry: the symmetry (the permutation symmetry) and the mirror symmetry. Besides, he160



widely uses the identity transformation unitary matrix(the symmetry of existence). Treatingthe relationships, caused by the automorphisms, Diuedonne inclines to the interpretation ofBachmann-Yaglom symmetries as binary symmetries.The notion of automorphism developed in the set theory. A. Fraenkel constructs the ZFCaxiomatics on the de�nition of automorphic relationship of set membership of element [5].While, the principle of nonempty set existence (the existence symmetry) is indirectly presentedin this de�nition. The ZFC axiomatics doesn't include any axioms, which determine the orderof set. Using the same objects, the Codd relational algebra, on the contrary, suggested theexistence of the order set before the determination of the set. This demand is determined bythe Codd second rule or by the �rst normal form of relational table. The relational algebra hasa lot of empiricisms. In spite of it, the thought of primacy of order and secondary of the set istaken as a basic statement of new interpretation.The table of the binary symmetries of the Euclidian plane is de�ned:1. Existence from set theory (Zermelo) and geometry (Duedonne);2. Set membership from set theory (A. Fraenkel);3. Linguistic order from geometry (Descartes, Klein) and relational algebra (Codd);4. Mathematical order from set theory (Cantor) and geometry (H. Weil);5. Permutation from geometry (Gilbert, Duedonne);6. Mirror from geometry (Gilbert, Duedonne) and art (Vitruvius, Leonardo).First two types of automorphism cover to the set theory and in�uence on practically allgeometric problems. Let's go into detail on the 3rd and the 4th types of the symmetry. Let'sconsider the set Z. This set obeys to the symmetry of translation were the step (rythm) is equal1. There is now step between numbers for the set R, but, nevertheless, there is the symmetryof translation, because every number is more than previous and less than next number, as itwas showed by Cantor. Let's consider the set of coordinates names in space: X, Y, Z, . . . Everyname is unique, as every real number is unique. The order of sequence is accurately de�ned.There is no rhythm as for real numbers as for the names of coordinates. The set of names makesthe symmetry of translation. For uni�cation, let's call this symmetry the symmetry of order.Let's call the order on numbers mathematical and the order of names � linguistic. Since, namescan be arbitrary (but unique), they may not form sets, but be enumerable by some means.The order of sequence in table is strict. The chosen symmetry can not contradict the olderone. Thereby, the empty set is the only asymmetry; it contradicts the symmetry of existence.Two theorems, de�ning the priority and interaction of the 4th and the 5th automorphisms areproved; the hypothesis of the symmetries balance is preconceived.The hypothesis of symmetries balance.Any relation, refection, function, operation, operator, morphism, transformation onEuclidean plane is carrying out accordingly in order to execute permutation symmetry withpreservation of mathematical order symmetry.Results of theoretical mathematics are use in table only. Additional semantics may beproduce for any parts of geometry from the informatics-linguistic interpretation. The de�nitionof canonic equation is gain a strong substantiation. Opposition between parabola and othersconic sections (according P.S. Alexandrov) is dismount. Some results were obtained in lineartransformations of complicated forms. Connection interpretation with theory or orthogonalinvariant allows to make this.
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Periodic packings of d-dimensional polycubes1.Andrey Maleev2Vladimir State Humanitarian University, Vladimir.andr_mal@mail.ruConsider some d-dimensional lattice L. A polycube is a �nite union of elementary cells of Lwith connected interior. Centers of elementary cells from polycube are called polycube points.The packing of polycubes is called normal if all polycube points from the packing belong to L.The polycubes packing is called periodic if its automorphism group contains some d-dimensionallattice Γ. If the fundamental domain of Γ contains only single polycube we have a translationpolycube packing. Let k be a packing density. If k = 1 we have a polycube tiling.A packing space [1] is the pair (L,w), where L is a lattice, and w is a function w : L →
{0, 1, . . . n − 1} such that all sets w−1(i), i = 0, 1, . . . , n − 1 are equivalent by translation tosome sublattice Γ ⊆ L. For any lattice point x ∈ L w(x) is called the weight of this point. Thenumber n is called the order of packing space. It is obvious that n = [L : Γ].Theorem 1. Let P = {βi}1≤i≤r be d-dimensional polycube. Then the following conditions areequivalent:1) There exists the polycube packing of P with packing density k = r

n2) There exists the packing space (L,w) of order n and vector x0 such that weights of thepoints {βi + x0}1≤i≤r are pairwise di�erent.Using this theorem we obtain the algorithm which generates all translation packings of agiven polycube with a given packing density. Let Cd(n) be a computational complexity of thisalgorithm.Theorem 2. In two-dimensional case we have
C2(n) = O(n2 ln lnn),

1

n

n∑

i=1

C2(i) = O(n2).In d-dimensional case we have
Cd(n) = O(nId(n)),where Id(n) is a number of sublattices of Zd with the index n.Note that the exact formula for Id(n) was obtained by B.N.Delone in [2].Now let Td(n) be a number of d-dimensional translation polycube tilings, where n is avolume of polycube.Theorem 3. There constants c1, c2 exist such that

c12
n ≤ T2(n) ≤ c22, 7

n.The theorem 1 can be generalized to �nite sets of polycubes. Consider a �nite sets ofpolycubes {Pj}1≤j≤M , where Pj = {βij}1≤i≤rj .1This work was partially supported by RFBR, grants N 08-01-00326, 08-02-00576.2This is a joint work with V.G.Rau and A.V.Shutov163



Theorem 4. The following conditions are equivalent:1) There exists the polycube packing of the set {Pj} with packing density k = R
n
, R =

∑M
i=1 rj2) There exists the packing space (L,w) of order n and the set of the vectors {x0j}1≤j≤Msuch that the points {βij + x0j}1≤i≤rj ,1≤j≤M are pairwise di�erent and have pairwise di�erentweights.Using this theorem we obtain the algorithm which generates all translation packings of agiven set of polycube with a given packing density [3].Every polycube packing can be associated with some d-tuple (c1, . . . , cd) with 0 ≤ ci ≤ 2d−1for 1 ≤ i ≤ d. This d-tuple is called a packing code. We use this code to recognize packingsequivalent by some transformation from SO(d). We also use this coding to obtain an algorithmfor generation of all periodic polycube tilings with a given volume of fundamental domain anda given number of polycubes.References[1] Maleev A. V. n-Dimensional Packing Spaces. // Crystallography Reports, Vol. 40, No. 3, 1995,pp. 354-356.[2] Delone B.N., Faddeev D.I. Teoriya irratinalnostey tretey stepeni // Trudy MIAN, Vol. 11, 1940,pp. 1-340.[3] Maleev A. V. An Algorithm and Program of Exhaustive Search for Possible Tiling of a Plane withPolyominoes. // Crystallography Reports, Vol. 46, No. 1, 2001, pp. 154-156.
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Hecke surfaces and Duality transformations in Lattice SpinSystems.Mikhail MonastyrskyInstitute for Theoretical and Experimental Physics, Moscow.monastyrsky@itep.ruAbstractIn this paper I discuss some topics which have long interested me . These themes relate withthe following subjects:1. Hecke surfaces and K- regular graphs.2. Duality transformations for generalized Potts models.Each of them relates with deep mathematical and physical theories and they have nothingin common at the �rst sight. However, it become more evident in the last year that a deepinternal relations between all these problems exist. Especially interesting and mysterious is therole of Hecke groups in this context.From this point of view is interesting to study the so called McKay correspondence whichattached to any �nite group K of SU(2) a certain graph which coincides with a�ne extensionsof Dynkin diagrams . Recently these results were extended by I.Dolgachev to the cocompactdiscrete subgroups γ of SU(1, 1). We consider McKay correspondence for Hecke groups and itsrelations with two-dimensional conformal �eld theory.The second problem which we discuss is the cluster behavior of zeros of the ChromaticPolynomial on graphs.There exists so called "Beraha conjecture"Conjecture 2. Let us consider a chromatic polynomial Pn(q) for arbitrary large planar graph.Then the real zeros of Pn(q) cluster round limit points. These limit points are so called"Berahanumbers"q = [2 cos(π/k)]2, k = 2, 3..This conjecture in general is still unproved. There is an interesting approach using quantumgroups (H.Saleur). I would like to outline another approach using Hecke graphs.In this case itis necessary to consider the Caley graph generating by Hecke groups. The partition function ofPotts anti-ferromagnetic model determined on this graph reduces to the chromatic polynomialswith desire properties.
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About optimality of Delaunay triangulations1.Oleg R. MusinThe University of Texas at Brownsville, USA.oleg.musin@utb.eduLet S be a generic set of n points {p1, ..., pn} in Rd. We denote by DT(S) the Delaunaytriangulation of the convex hull of S in Rd with vertices in S. In [1,2,3] we de�ned severalfunctionals on the set of all triangulations of S achieving global minimum on DT(S). In thispaper we consider two more optimal functionals.Delaunay triangulation is used in numerous number of applications. It is usually chosen overother triangulations. A logical question may arise: why this triangulation is better than others?Usually, the advantages of planar Delaunay triangulations are rationalized by the max-minangle criterion [Sibson, 1978]. The sequence of triangle angles, sorted from sharpest to leastsharp, is lexicographically maximized over all such sequences constructed from triangulation of
S. In particular, the Delaunay triangulation of S ⊂ R2 maximizes the minimum angle in anytriangle.The �radius� functional is the mean of circumradii of triangles for planar triangulations [2].Let t be a triangulation of S in the plane. Assume that each triangle ∆i of this triangulationis related to the radius Ri of its circumcircle. For every triangulation t is de�ned the set ofcircumradii {R1, ..., Rk} of triangles ∆i ∈ t. The functional ρ(t, a) := ∑

Ra
i , a > 0 attains itsminimum if and only if t is the Delaunay triangulation [2].The Delaunay triangulation maximizes the arithmetic mean inradius: The functional L(t) =∑

ri attains its maximum if and only if t is the Delaunay triangulation [Lambert, 1994].For a polygon P its harmonic index hrm(P ) :=
∑
a2i /S(P ), where a1, . . . , am are the lengthsof sides of P and S(P ) is its area. We have: The harmonic index hrm(t) :=

∑
i hrm(∆i) of atriangulation t of S ⊂ R2 achieves its minimum if and only if t is the Delaunay triangulationof S [1,2].Let t be a triangulation of S ⊂ Rd. Denote by R(t, a) := ∑

iR
a
i vol(∆i).Conjecture 1: The functional R(t, a), where a ≥ 1, achieves its minimum on the set of alltriangulations of S ⊂ Rd if and only if t is the Delaunay triangulation.Let D(t, a) :=

∑
i |bi − ci|a vol(∆i), where bi is the barycenter and ci is the circumcenter of

∆i.Conjecture 2: The functional D(t, a), where a ≥ 2, achieves its minimum on the set of alltriangulations of S ⊂ Rd if and only if t is the Delaunay triangulation.Theorem 1. Conjectures 1 and 2 are correct for d = 2.Theorem 2. For any d ≥ 2 the functional R(t, 2)−D(t, 2) attains its minimum if and only if
t =DT(S).A proof of this theorem follows from the fact that

R(t, 2)−D(t, 2) = c(d)V r(t) + I(S),where V r(t) (see [2,3]) is a functional which achieves its minimum for t =DT(S), c(d) is apositive constant, and I(S) > 01Research supported in part by NSF grant DMS-0807640 and NSA grant MSPF-08G-201.166
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On geometry of Peano Curves.Evgenii ScepinSteklov Mathematical Institute, Moscow.scepin@mi.ras.ruThe lecture present a review of recent results concerning evaluation of square-to-linearratio and related characteristic of Peano Curves. Di�erent applications of Peano Curves inmathematic and nature will be discussed.
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Îá îãðàíè÷åíèè ïîðÿäêà îñè ïàó÷êà â ëîêàëüíîïðàâèëüíîé ñèñòåìå Äåëîíå1.Ìèõàèë ØòîãðèíÌàòåìàòè÷åñêèé Èíñòèòóò èì. Â.À.Ñòåêëîâà ÐÀÍ, Ìîñêâà.stogrin@mi.ras.ruÏóñòü â n-ìåðíîì ïðîñòðàíñòâå Rn, Hn èëè Sn çàäàíî ìíîæåñòâî òî÷åê S, óäîâëåòâî-ðÿþùåå ñëåäóþùèì äâóì óñëîâèÿì:1) ðàññòîÿíèå ìåæäó òî÷êàìè èç ìíîæåñòâà S íå ìåíüøå r;2) â çàìêíóòîì øàðå ðàäèóñà R ñ öåíòðîì â ïðîèçâîëüíîé òî÷êå ïðîñòðàíñòâà èìååòñÿïî ìåíüøåé ìåðå îäíà òî÷êà èç S.Òîãäà ìíîæåñòâî S íàçûâàåòñÿ (r, R)-ñèñòåìîé òî÷åê èëè æå ñèñòåìîé Äåëîíå. Âïðåäüáóäåì ñ÷èòàòü, ÷òî r ÿâëÿåòñÿ íàèáîëüøèì ÷èñëîì, óäîâëåòâîðÿþùèì óñëîâèþ 1), à R −íàèìåíüøèì ÷èñëîì, óäîâëåòâîðÿþùèì óñëîâèþ 2). Ìíîæåñòâî òî÷åê èç S, ïðèíàäëåæà-ùèõ øàðó ðàäèóñà ρ ñ öåíòðîì â òî÷êå A èç S, îáîçíà÷èì ÷åðåç SA(ρ). Ãðóïïó ïîâîðîòîâïðîñòðàíñòâà âîêðóã òî÷êè A, ñîâìåùàþùèõ SA(ρ) ñ ñîáîé, îáîçíà÷èì ÷åðåç HA(ρ). Ïóñòü
ρ1 − íàèìåíüøåå ÷èñëî, ïðè êîòîðîì âûïîëíåíî ðàâåíñòâî HA(ρ1 + 2R) = HA(ρ1). Òî-ãäà SA(ρ1 + 2R) íàçîâåì ñòàáèëüíûì ìíîæåñòâîì òî÷åê äëÿ A. Ñîâîêóïíîñòü âåêòîðîâ ñíà÷àëîì â A è êîíöàìè âî âñåõ îñòàëüíûõ òî÷êàõ ìíîæåñòâà SA(ρ1+2R) íàçîâåì ñòàáèëü-íûì ïàó÷êîì òî÷êè A è îáîçíà÷èì ÷åðåç PA(ρ1 + 2R). Â ðàáîòå [1] äîêàçàí ñëåäóþùèéêðèòåðèé:Êðèòåðèé. Åñëè ñòàáèëüíûå ïàó÷êè âñåõ òî÷åê èç S êîíãðóýíòíû, òî ìíîæåñòâî
S ÿâëÿåòñÿ ïðàâèëüíûì è òîãäà S â öåëîì îäíîçíà÷íî çàäàåòñÿ ñòàáèëüíûì ïàó÷êîì
PA(ρ1 + 2R).Ñèñòåìà òî÷åê S íàçûâàåòñÿ ïðàâèëüíîé, åñëè êàæäàÿ åå òî÷êà îäèíàêîâî îêðóæåíàâñåìè îñòàëüíûìè òî÷êàìè èç S. Èíîãäà ïðàâèëüíàÿ ñèñòåìà òî÷åê îäíîçíà÷íî çàäàåò-ñÿ ñâîèì ïðåäñòàáèëüíûì ïàó÷êîì PA(ρ1). Íàïðèìåð, âåðøèíû ïëàòîíîâà ðàçáèåíèÿ (kq)ñîñòàâëÿþò ïðàâèëüíóþ ñèñòåìó òî÷åê; äëÿ íåå èìååì ρ1 = r èHA(r) = q ·m; îíà îäíîçíà÷-íî îïðåäåëÿåòñÿ ïî ñâîåìó ïðåäñòàáèëüíîìó ïàó÷êó PA(r). (Äëÿ àðõèìåäîâûõ ðàçáèåíèéýòî íå òàê [1].) Íàïîìíèì: ïðè 2(k + q) > kq èìåþòñÿ 5 ðàçáèåíèé (kq) ñôåðû S2; ïðè
2(k + q) = kq èìåþòñÿ 3 ðàçáèåíèÿ (kq) åâêëèäîâîé ïëîñêîñòè R2, ïðè 2(k + q) < kqèìååòñÿ ñ÷åòíîå ìíîæåñòâî ðàçáèåíèé (kq) ïëîñêîñòè Ëîáà÷åâñêîãî H2.Áóäåì íàçûâàòü (r, R)-ñèñòåìó òî÷åê S ëîêàëüíî ïðàâèëüíîé, åñëè äëÿ âñåõ òî÷åê Aèç S ïàó÷êè PA(2R) êîíãðóýíòíû.Òåîðåìà 1. Åñëè (r, R)-ñèñòåìà â R3 ëîêàëüíî ïðàâèëüíà, òî ïîðÿäîê ïîâîðîòíîé îñè
a èç ãðóïïû HA(2R) íå áîëüøå 6.Äîêàçàòåëüñòâî òåîðåìû 1. Îò ïðîòèâíîãî. Ïóñòü ïîðÿäîê îñè a áîëüøå 6. Òîãäà ïàó÷îê
PA(r) ñîñòîèò èç íàïðàâëåííûõ âäîëü îñè a íå áîëåå ÷åì äâóõ êîëëèíåàðíûõ âåêòîðîâ.Â ñàìîì äåëå, åñëè áû âåêòîð èç ïàó÷êà PA(r) íå áûë êîëëèíåàðåí a, òî ðàçìíîæèâ åãîïîâîðîòàìè âîêðóã a, ìû ïîëó÷èëè áû áîëåå 6 âåêòîðîâ, ïðèíàäëåæàùèõ PA(r). Èõ êîíöûëåæàëè áû íà îêðóæíîñòè ñ öåíòðîì íà a. Ðàññòîÿíèå ìåæäó áëèæàéøèìè êîíöàìè áûëîáû ìåíüøå r, ÷òî ïðîòèâîðå÷èëî áû óñëîâèþ 1).Èòàê, âåêòîðû ïàó÷êà PA(r) êîëëèíåàðíû, à âåêòîðû ïàó÷êà PA(2R) ñîñòàâëÿþò [1]áàçèñíóþ ñîâîêóïíîñòü â R3. Ïóñòü ρ? íàèìåíüøåå èç ÷èñåë ρ íà îòðåçêå [r, 2R], ïðè êî-1Ðàáîòà âûïîëíåíà ïðè ôèíàíñîâîé ïîääåðæêå Ðîññèéñêîãî ôîíäà ôóíäàìåíòàëüíûõ èññëåäîâàíèé(ïðîåêò 08-01-00565) è ãîñóäàðñòâåííîé ïðîãðàììû ÎÌÍ ÐÀÍ �Ñîâðåìåííûå ïðîáëåìû òåîðåòè÷åñêîéìàòåìàòèêè�. 168



òîðîì âåêòîðû ïàó÷êà PA(ρ?) íåêîëëèíåàðíû. Òîãäà r < ρ? ≤ 2R. Ïóñòü B êîíåö òî-ãî èç âåêòîðîâ, êîòîðûé íå íàïðàâëåí âäîëü a. Òîãäà âìåñòå ñ AB ïàó÷îê PA(ρ?) ñî-äåðæèò âåêòîðû AC è AD, êîòîðûå ïîëó÷àþòñÿ èç AB ïðè ïîâîðîòàõ âîêðóã a íàíàèìåíüøèé óãîë ïî è ïðîòèâ ÷àñîâîé ñòðåëêè ñîîòâåòñòâåííî. Òî÷êè D, B, C ëåæàòíà îêðóæíîñòè ñ öåíòðîì N ∈ a. Ðàäèóñû ND, NB, NC ïåðïåíäèêóëÿðíû a. Â ñèëó
BD = BC < BN =

√
BA2 −NA2 ≤ BA = ρ? âåêòîðû BC è BD ïðèíàäëåæàò íå òîëüêîïàó÷êó PB(ρ?), íî è ïîäïàó÷êó PB(ρ̂), ãäå ρ̂ = BC < ρ?. Òàê êàê BC è BD íåêîëëèíåàðíû,òî ëîêàëüíîé ïðàâèëüíîñòè íåò. Ïðîòèâîðå÷èå. Ñëåäîâàòåëüíî, ïîðÿäîê îñè a íå áîëüøå6. Òåîðåìà 2. Åñëè ïîðÿäîê îñè a ðàâåí 6, òî èç ëîêàëüíîé ïðàâèëüíîñòè (r, R)-ñèñòåìûâ R3 ñëåäóåò åå ïðàâèëüíîñòü.Äîêàçàòåëüñòâî òåîðåìû 2. Ïóñòü ïîðÿäîê îñè a ðàâåí 6. Òîãäà âîçìîæíî îäíî èçäâóõ: ëèáî ρ? = r, ëèáî ρ? > r. Â ëþáîì ñëó÷àå ïàó÷îê PA(ρ?) ñîäåðæèò ãåêñàãîíàëüíóþñíåæèíêó, îäíîçíà÷íî ïðîäîëæàþùóþñÿ äî ïëîñêîé ãåêñàãîíàëüíîé ðåøåòêè. Â ñèëó ýòîãîè ëîêàëüíîé ïðàâèëüíîñòè âñÿ (r, R)-ñèñòåìà â R3 ïðåäñòàâëÿåò ñîáîé ãåêñàãîíàëüíóþðåøåòêó èëè áèðåøåòêó. Ëèòåðàòóðà[1] Á.Í.Äåëîíå, Í.Ï.Äîëáèëèí, Ì.È.Øòîãðèí, Ð.Â. Ãàëèóëèí. Ëîêàëüíûé êðèòåðèéïðàâèëüíîñòè ñèñòåìû òî÷åê // ÄÀÍ ÑÑÑÐ, 227:1 (1976), 19�21.
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Continuous deformation extending over three spherepacking structures: simple cubic lattice, body-centredcubic lattice and face-centred cubic latticeYoshinori TeshimaNational Institute of Advanced Industrial Science and Technology, Japanyoshinori.teshima@aist.go.jpAbstract. We show the existence of a continuous deformation extending over three spherepackings corresponding to simple cubic lattice, body-centred cubic lattice and face-centred cubiclattice. Throughout the continuous deformation, each sphere makes contact with at least sixspheres, and the entire structure sustains a packing structure. The changes in packing density,contact number and space group under the deformation process are explained in detail.1 IntroductionThree sphere packings corresponding to simple cubic (SC) lattice, body-centred cubic(BCC) lattice and face-centred cubic (FCC) lattice �rst appear in the textbook of high-schoolchemistry. The sphere packing corresponding to SC-lattice has properties: the packing densityis about 0.52, the contact number (with surrounding spheres) is 6, and the space group isPm3m. The sphere packing corresponding to BCC-lattice has properties: the packing densityis about 0.68, the contact number is 8, and the space group is Im3m. The sphere packingcorresponding to FCC-lattice has properties: the packing density is about 0.74, the contactnumber is 12, and the space group is Fm3m. All three structures are in the cubic system butbelong to the di�erent space groups. Continuous deformation extending over these three spherepacking structures seems have never reported in the past papers.2 FCC-sphere packing is one of layer stacking structures ofhexagonal latticeKepler conjectured �Layer stacking of hexagonal lattice is the densest packing of equalspheres� in 1611. Gauss proved it under the periodic packing in 1831. Hales proved it under thegeneral condition in 1998. Thus FCC is one of the densest sphere packing structures. Each layerof hexagonal lattice stacking belongs three kinds of position: A-, B-, or C-site. The stackingof FCC structure is described as the in�nite sequence (...ABCABCABCABC...) and this iscalled ABC-stacking. Standard textbooks of solid state physics in university include the factthe FCC-sphere packing is constructed by the ABC-stacking.3 SC- and BCC-sphere packings are also ABC-stackingEach of SC- and BCC-sphere packings can be regarded as the ABC-stacking of hexagonallattice too. This is an unfamiliar fact to the public but we can con�rm the fact by classifying thepositions of spheres projected to the plane normal to a <111>-direction. Positions belongingto di�erent heights are classi�ed into A-, B-, or C-site. In FCC-sphere packing, a hexagonallattice is consist of mutually contacted spheres. But in SC- and BCC-sphere packing, spheresin a hexagonal lattice are separated at regular intervals.4 Intuitive explanation for the continuous deformation170



Now all three sphere packing structures have a common property, that is, layer stackingsof hexagonal lattice. Therefore, it might be possible that three structures are describedcomprehensively. Finally, we found the existence of a continuous deformation extending overthree sphere packings. An intuitive explanation is given as follows. Starting from FCC, makedistance of spheres in each layer a little larger. At the moment, contact number of each spherechanges from 12 to zero. If we compress the structure along stacking direction until layers arecontact, the entire structure sustains a packing structure again.5 Changes in packing density, contact number and space group underthe deformation processWe investigated changes in packing density, contact number and space group under thedeformation process. An exact expression for the packing density was successfully calculated.We will explain the details in my talk.6 The Non-characteristic OrbitsThere is an unsolved problem in crystallography, that is, �Find all non-characteristic G-orbitsfor any space group in 3D�. In two-dimensional space, general solution for plane groups wasobtained [1]. But in three-dimensional space, the problem was partly solved but the solutionwas limited into the same crystal family [2]. During the continuous deformation, the spacegroup R3m changes to other space groups Fm3m, Im3m, Pm3m which have higher symmetrythan R3m. Fm3m, Im3m, Pm3m are in the cubic system but R3m is in the trigonal system.Therefore, this is an example of non-characteristic orbits which extend over the di�erent crystalfamily. This is the theoretical signi�cance of the present work .References[1] Matsumoto, T. and Wondratschek, H.: The non-characteristic G-orbits of the planegroups, Z.Kristallogr. Vol. 179, (1987) pp. 7-30[2] Engel, P., Matsumoto, T., Steinmann, G., Wondratschek, H., The non-characteristicorbits of the space groups, pp. 1-218. Suppl.Issue Nr.1, Z.Kristallogr. Munchen: R. OldenbourgGmbh 1984
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Creating real 3D models of mathematicsYoshinori TeshimaNational Institute of Advanced Industrial Science and Technology, Japanyoshinori.teshima@aist.go.jpAbstract. Accurate models of mathematically de�ned curved surfaces and polyhedrawere constructed. Exact shape data were generated on a personal computer (PC) usingmathematical or computer-aided design (CAD) software. Then models were constructed bylayered manufacturing, which is well suited for curved surfaces. This method is �exible in thatthe equation parameters and model scale can be changed easily. For polyhedron models, wecreated wooden models in addition to layered manufacturing models.1 IntroductionIn the past, there was a systematic study on the development of three-dimensional (3D)mathematical models in Germany which was started around 1870 [1]. This required a host ofthe best mathematicians to work in collaboration with skilled workmen. They developed manywonderful models, but since production ceased, these models are rarely found these days. Wehave been involved with the 'Research on the recognition of 3D objects by visually handicappedpersons and development of 3D geometrical teaching materials' project in Japan since 2006[2][3]. One of our main aims is to develop teaching materials to enrich the tactile world for theblind. Many models have been developed thus far. Times have changed. The situation todayis quite di�erent from that in 1870. Now, we can construct mathematical models without theassistance of the best mathematicians and skilled workmen. In this paper, we describe our 3Dmodels of mathematically de�ned curved surfaces and polyhedra.2 Models of Ring, Horn, and Spindle TorusConsider an ordinary torus, which is a surface with a hole. Let d denote the radius fromthe centre of the hole (0,0,0) to the centre of the torus tube and r denote the radius of thetube. There are three types of tori depending on the relative values of d and r. The conditionr < d corresponds to a ring torus; r = d, a horn torus, which is tangential to itself at thepoint (0,0,0); and r > d, a self-intersecting spindle torus. We created seven kinds of torus whichincludes three kinds of ring torus, one kind of horn torus, and three kinds of spindle torus. Apair of two equally partitioned models were also created for each of seven models. These modelsare useful for systematic and intuitive learning of three kinds of torus [3].3 Models of Hula-Hoop SurfaceThe horn torus and spindle torus do not have a hole. The abovementioned three kinds oftorus are regarded as the loci of circular movement of a circle, which is perpendicular to thehorizontal plane. If we bend the perpendicular circle backward by 45◦, a hole appears at thecentre of locus of circular movement despite the relative size r > d. The surface is called Hula-Hoop surface [4]. If we consider a semicircular movement (180◦) of the inclined circle, we obtaininteresting models which are a pair of mirror images.4 Models of Bohemian Dome 172



We continues to consider circular movements of a circle. But in this case, a circular movementis performed in a vertical plane. Then, the circle always turns its face towards the verticaldirection. As a result, we obtain an unfamiliar but beautiful surface. This surface is calledBohemian dome [1]. Another beautiful model is obtained by considering the elliptical movementof an ellipse [5].5 Models of Klein BottleThe Klein bottle is a non-orientable surface. The surface has no distinct `inner' and `outer'sides. And the inside space of the bottle is linked to its outside space. But we cannot createsuch a model in 3D because a self-intersection is unavoidable. The self-intersection is avoidablein 4D. We created two kinds of model for Klein bottle. One is the correct Klein bottle and theother is the incorrect Klein bottle. A pair of equally partitioned models were created for eachof Klein bottles.6 Models of PolyhedronWe created models of regular polyhedra and semi-regular polyhedra. Sixteen Archimedeanpolyhedra that include both two mirror images and a Miller's solid. We presented their modelsby layered manufacturing and wooden polyhedra.7 Models of Crystallographic StructureWe created three kinds of space-�lling polyhedron: cube, truncated octahedron, and rhombicdodecahedron. They are corresponding to Voronoi regions for SC (simple cubic), BCC (body-centred cubic) and FCC (face-centred cubic) lattice respectively.There are innumerable space-�lling polyhedra (e.g., rectangular parallelepiped). But thesethree are special because they are the only one polyhedron from regular polyhedra, quasi-regularpolyhedra, and their dual polyhedra respectively.Acknowledgments. This study was partially supported by a Grant-in-Aid for Scienti�cResearch (A) (18200049) from the Japan Society for the Promotion of Science (JSPS).References[1] Fischer, G.: Mathematical Models, Vieweg, 1986[2] Teshima, Y.: Three-dimensional Tactile Models for Blind People and Recognition of 3DObjects by Touch, Lecture Notes in Computer Science, Vol. 6180 (2010) pp. 513-514[3] Teshima, Y. et al.: Models of Mathematically De�ned Curved Surfaces for TactileLearning, Lecture Notes in Computer Science, Vol. 6180 (2010) pp. 515-522[4] Ogiue, K. and Takeuchi, N.: Hulahoop surhaces, Journal of Geometry, Vol. 46 (1993) pp.127-132[5] Teshima, Y. and Ogawa, T.: Loci of circular movement of circle and their layeredmanufacturing models. To be published in The Journal of the International Society for theInterdisciplinary Study of Symmetry, (2010)
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Ê ãåîìåòðèè ôóëëåðåíîâ.Þðèé ÂîéòåõîâñêèéÃåîëîãè÷åñêèé èíñòèòóò ÊÍÖ ÐÀÍ, Àïàòèòû.woyt@geoksc.apatity.ruÔóëëåðåíû � ñàìûå èíòðèãóþùèå îáúåêòû ìèðà íàíîðàçìåðíûõ ìèíåðàëüíûõ è áèî-ëîãè÷åñêèõ ñòðóêòóð. Íî äî ñèõ ïîð íåò ïîñëåäîâàòåëüíîãî èçëîæåíèÿ ðàçðîçíåííûõ ñâå-äåíèé î êîìáèíàòîðíîé ãåîìåòðèè ôóëëåðåíîâ. Ïîä ôóëëåðåíàìè äàëåå ïîíèìàþòñÿ íåòîëüêî �íîáåëåâñêèå� ïîëèýäðè÷åñêèå ìîëåêóëû C60 è C70, íî âñÿêèé 3-ìåðíûé âûïóêëûéïðîñòîé ïîëèýäð, íà êîòîðîì ðàçðåøåíû òîëüêî 5- è 6-óãîëüíûå ãðàíè. �Ïîäâîäíóþ ÷àñòüàéñáåðãà� ïðè äîêàçàòåëüñòâå òåîðåì î ôóëëåðåíàõ ÿâíî èëè íåÿâíî ñîñòàâëÿþò ñîîòíî-øåíèå Ýéëåðà f + v = e + 2 äëÿ ëþáûõ � ïðîñòûõ è íåïðîñòûõ � âûïóêëûõ ïîëèýäðîâè ñëåäóþùåå èç íåãî ðàâåíñòâî ∑
(6 − k)fk = 12 äëÿ âûïóêëûõ ïðîñòûõ ïîëèýäðîâ (äëÿíåïðîñòûõ ïîëèýäðîâ èìååò ìåñòî íåðàâåíñòâî >), ãäå fk � ÷èñëî k-óãîëüíûõ ãðàíåé. Äëÿôóëëåðåíîâ îíî ñâîäèòñÿ ê ñîîòíîøåíèþ f5 = 12 áåç îãðàíè÷åíèé íà f6 [1]. Áîëüøèí-ñòâî òåîðåì î ôóëëåðåíàõ äîêàçûâàåòñÿ óêàçàíèåì ïðîöåäóðû, ïðèâîäÿùåé ê ïîñòðîåíèþïðîåêöèè Øëåãåëÿ. Çäåñü ïîäðàçóìåâàåòñÿ äðóãàÿ ôóíäàìåíòàëüíàÿ òåîðåìà î òîì, ÷òîïðîåêöèÿ ìîæåò áûòü �ðàñïðàâëåíà� â 3-ìåðíûé ïîëèýäð, ïðè÷¸ì ñ ðåàëèçàöèåé åãî ìàê-ñèìàëüíîé ñèììåòðèè. Èìåÿ â âèäó ýòè îãîâîðêè, ïðèâåä¸ì êîðïóñ òåîðåì î ôóëëåðåíàõ,âîñïîëíÿþùèé óêàçàííûé âûøå ïðîáåë.Òåîðåìà î ñóùåñòâîâàíèè ôóëëåðåíà Cv äëÿ v=20 è ëþáîãî ÷¸òíîãî v > 24. Äîêàçàíàâ [5] è � íåçàâèñèìî � â [11]. C20 � ýòî äîäåêàýäð, ïðîñòåéøèé èç ôóëëåðåíîâ. Íåâîç-ìîæíîñòü ôóëëåðåíà C22 äîêàçûâàåòñÿ â [11] íåâîçìîæíîñòüþ ïîñòðîåíèÿ åãî ïðîåêöèèØëåãåëÿ. Â [5, ð. 745] ýòîò âîïðîñ ñ÷èòàåòñÿ î÷åâèäíûì: �Polyhedra P1 and Q1 obviouslydo not exist�. (Çäåñü C22 îáîçíà÷åí êàê P1.) Ìåæäó òåì, âåñüìà äîñàäíî òî îáñòîÿòåëü-ñòâî, ÷òî íåâîçìîæíîñòü ôóëëåðåíà C22 íå óäà¸òñÿ äîêàçàòü àëãåáðàè÷åñêè, èñõîäÿ èç èç-âåñòíûõ êîìáèíàòîðíî-ãåîìåòðè÷åñêèõ ñîîòíîøåíèé. Ñóùåñòâîâàíèå áåñêîíå÷íîé ñåðèèôóëëåðåíîâ íà÷èíàÿ ñ C24 â îáîèõ ñëó÷àÿõ äîêàçûâàåòñÿ êîíñòðóêòèâíî � ïðåäúÿâëåíè-åì �ïîëóñôåðè÷åñêèõ� ôðàãìåíòîâ ðàçëè÷íîé êîíñòðóêöèè, êîìïîçèöèÿ êîòîðûõ âìåñòåñ ðàçëè÷íûì ÷èñëîì ïîÿñîâ, ñîñòîÿùèõ èç ãåêñàãîíîâ, îáåñïå÷èâàåò ñóùåñòâîâàíèå ôóë-ëåðåíà Cv ñ íóæíûì v > 24. Â [5] ïðèâåäåíû 4 �ïîëóñôåðè÷åñêèõ� ôðàãìåíòà, â [11] � 5,÷òî ñîñòàâëÿåò èõ ïîëíîå ÷èñëî. Âñòðàèâàíèå â ñòðóêòóðó ïîÿñîâ ãåêñàãîíîâ ïîðîæäàåòñåðèþ ôóëëåðåíîâ ñ ñîáñòâåííûì íàçâàíèåì �òóáóëåíû�, ïðîèçâîäñòâî êîòîðûõ íà îñíîâåóãëåðîäà âåñüìà âàæíî äëÿ ýëåêòðîíèêè.Òåîðåìà î ñóùåñòâîâàíèè ïðîñòåéøèõ ôóëëåðåíîâ Cv áåç òðèàä ïåíòàãîíîâ, êîíòàêòè-ðóþùèõ â îáùåé âåðøèíå, äëÿ v=50. Äîêàçàíà â [7] êîíñòðóêòèâíûì ñïîñîáîì ñ ïîñòðî-åíèåì äâóõ òàêèõ ôóëëåðåíîâ C50 (-10m2, 32). Êîìïüþòåðíûå ïåðå÷èñëåíèÿ ïîêàçàëè,÷òî ÷èñëî òàêèõ ôîðì áûñòðî ðàñò¸ò ñ v, äëÿ äèàïàçîíà C50 � C70 âñå îíè íàéäåíû èîõàðàêòåðèçîâàíû òî÷å÷íûìè ãðóïïàìè ñèììåòðèè â [9]. Íî îòñóòñòâóåò äîêàçàòåëüñòâîòîãî, ÷òî òàêèå ôóëëåðåíû âîçìîæíû äëÿ ëþáîãî ÷¸òíîãî v>50. Å¸ ôèçè÷åñêîé ïîäî-ïë¸êîé ñëóæèò òî, ÷òî â îðãàíèçàöèè òàêèõ ôóëëåðåíîâ (ïî ñðàâíåíèþ ñ ôóëëåðåíàìè ñòðèàäàìè êîíòàêòèðóþùèõ ïåíòàãîíîâ) ñîâåðøàåòñÿ âàæíûé ñêà÷îê íà ïóòè ê èõ ïîòåí-öèàëüíîé ñòàáèëüíîñòè. Åñòü ôàêòû, ãîâîðÿùèå î òîì, ÷òî îíè ìîãóò áûòü ñòàáèëüíûìè,â îñîáåííîñòè ïðè íàëè÷èè äîïèðóþùèõ àòîìîâ.Òåîðåìà î ñóùåñòâîâàíèè ôóëëåðåíà Cv áåç êîíòàêòèðóþùèõ ïåíòàãîíîâ äëÿ v =60 èëþáîãî ÷¸òíîãî v > 70. Äîêàçàíà â [6, 10] êîíñòðóêòèâíûì ñïîñîáîì, ïî àíàëîãèè ñ äîêà-çàòåëüñòâîì òåîðåìû î ñóùåñòâîâàíèè ôóëëåðåíà. Íî â [6] èñïîëüçîâàíû 4 �ïîëóñôåðè÷å-174



ñêèõ� ôðàãìåíòà, òîãäà êàê â [10] � âñå 18, çàïîëíÿþùèõ òîò æå êîíòóð è ïîðîæäàþùèõãîðàçäî áîëüøåå ðàçíîîáðàçèå áåñêîíå÷íûõ ñåðèé ôóëëåðåíîâ áåç êîíòàêòèðóþùèõ ïåí-òàãîíîâ. Ôèçè÷åñêàÿ ïîäîïë¸êà òåîðåìû ñîñòîèò â òîì, ÷òî íàèáîëåå ñòàáèëüíû èìåííîôóëëåðåíû áåç êîíòàêòèðóþùèõ ïåíòàãîíîâ. Ýòà òåîðåìà óêàçûâàåò âàæíûå îãðàíè÷åíèÿíà ÷èñëî âåðøèí (àòîìîâ) òàêèõ ôóëëåðåíîâ.Òåîðåìà î ñóùåñòâîâàíèè èêîñàýäðè÷åñêèõ ôóëëåðåíîâ Cv ïðè v = 20(h2+hk+k2), ãäå
0 < h > k > 0 � öåëûå ÷èñëà. Äîêàçàíà â [4]. Âàæíîñòü òåîðåìû ñîñòîèò â òîì, ÷òî îíàóêàçûâàåò íåîáõîäèìîå è äîñòàòî÷íîå óñëîâèå äëÿ ÷èñëà âåðøèí èêîñàýäðè÷åñêèõ (ñàìûõñèììåòðè÷íûõ è ïîòîìó ïîòåíöèàëüíî íàèáîëåå ñòàáèëüíûõ) ôóëëåðåíîâ. Äîñòàòî÷íîñòüðåàëèçóåòñÿ ÷åðåç êîíñòðóêòèâíóþ ñõåìó ïîñòðîåíèÿ ôóëëåðåíà ñ çàäàííûì v. Ìîæíîïîêàçàòü, ÷òî ôóëëåðåíû (h, 0) è (h, h) èìåþò ñèììåòðèþ -3-5m, ôóëëåðåíû (h, k) ïðè
h 6= k � ñèììåòðèþ 235. Áèîëîãè÷åñêàÿ ïîäîïë¸êà òåîðåìû ñîñòîèò â ñóùåñòâîâàíèèîáøèðíîãî êëàññà èêîñàýäðè÷åñêèõ âèðóñîâ, ðàäèîëÿðèé è ïðîñòåéøèõ âîäîðîñëåé, äëÿêîòîðûõ òåîðåìà óêàçûâàåò ñòðîãèå ïðèöèïû êëàññèôèêàöèè ñòðóêòóð [2].Òåîðåìà î ôóëëåðåíàõ-ãåíåðàòîðàõ. Äîêàçàíà â [3]. Ïîêàçàíî, ÷òî â ìíîæåñòâå èêîñàýä-ðè÷åñêèõ ôóëëåðåíîâ ñóùåñòâóþò áåñêîíå÷íûå ñåðèè äâóõ òèïîâ. (*) Ïîðîæäàåòñÿ ïåðåõî-äîì ê äóàëüíîìó ïîëèýäðó è óñå÷åíèåì åãî ïî âñåì âåðøèíàì: (h, k)→ (h+2k, h−k). ×èñëîâåðøèí ôóëëåðåíà óâåëè÷èâàåòñÿ ïðè ýòîì â 3 ðàçà. (**) Ïîðîæäàåòñÿ �ïðåîáðàçîâàíèåìïîäîáèÿ� (h, k) → (th, tk), ãäå t � ëþáîé íàòóðàëüíûé ìíîæèòåëü. ×èñëî âåðøèí ôóëëå-ðåíà óâåëè÷èâàåòñÿ ïðè ýòîì â t2 ðàç. Äâóêðàòíîå ïðèìåíåíèå ïðîöåäóðû (*) ðàâíîñèëüíîïðîöåäóðå (**) ñ t=3. Ãåíåðàòîðàìè íàçâàíû ôóëëåðåíû, íå ïîëó÷àåìûå ïðîöåäóðàìè (*)è (**) èç áîëåå ïðîñòûõ. Ïîêàçàíî, ÷òî ãåíåðàòîðàìè ÿâëÿþòñÿ òå è òîëüêî òå ôóëëåðåíû(h, k), äëÿ êîòîðûõ h 6= k(mod3). Îïèñàíèå ìíîãîîáðàçèÿ èêîñàýäðè÷åñêèõ ôîðì íà óðîâíåãåíåðàòîðîâ ïðîùå, ÷åì íà óðîâíå èíäèâèäóàëüíûõ ôîðì. Ýòà òåîðåìà óãëóáëÿåò ïðåäû-äóùóþ è òàêæå èìååò îòíîøåíèå ê îïèñàíèþ ìíîãîîáðàçèé èêîñàýäðè÷åñêèõ âèðóñîâ èðàäèîëÿðèé (Circogonia icosahedra, Circogonia dodecahedra è äð.).Òåîðåìà îá èêîñàýäðè÷åñêèõ ôóëëåðåíàõ-èçîìåðàõ. Àíàëèç èêîñàýäðè÷åñêèõ ôóëëåðå-íîâ îáíàðóæèâàåò èçîìåðû, ïðîñòåéøèå èç íèõ: (7, 0) è (5, 3) ñ 980 âåðøèíàìè, (9, 1) è (6,5) ñ 1820 âåðøèíàìè. Êîìïüþòåðíûìè ïåðå÷èñëåíèÿìè íàéäåíû ïðîñòåéøèå ñåðèè äî 10èçîìåðîâ. Â àòîìíîì ïðåäñòàâëåíèè îíè ñòîëü îãðîìíû, ÷òî èìåþò ëèøü òåîðåòè÷åñêèéèíòåðåñ. Òî åñòü, â áëèæàéøåé îáëàñòè ñïåêòðà ïàðà ÷èñåë (h, k) ôèêñèðóåò äàæå êîì-áèíàòîðíûé òèï ôóëëåðåíà. Íî òåîðåòè÷åñêè èíòåðåñåí âîïðîñ î ïðîñòåéøèõ òðîéêàõ,÷åòâ¸ðêàõ � n-êàõ èêîñàýäðè÷åñêèõ ôóëëåðåíîâ-èçîìåðîâ. Òåîðåòèêî-÷èñëîâàÿ çàäà÷àñîñòîèò â îòûñêàíèè ïîñëåäîâàòåëüíîñòè íàòóðàëüíûõ N, äîïóñêàþùèõ çàäàííîå ÷èñëîn ðàçëè÷íûõ ïðåäñòàâëåíèé â âèäå íåïîëíîãî êâàäðàòà h2 + hk + k2. Â îáùåì âèäå îíàíå ðåøåíà. Ëåãêî ïîêàçàòü, ÷òî â ñåðèè èêîñàýäðè÷åñêèõ èçîìåðîâ ëèøü îäèí ôóëëåðåíìîæåò èìåòü ñèììåòðèþ -3-5m. Äåéñòâèòåëüíî, èêîñàýäðè÷åñêèå (-3-5m) ôóëëåðåíû ïðåä-ñòàâëåíû ëèøü ñåðèÿìè âèäà (h, 0) è (h, h) ñ ÷èñëàìè âåðøèí h2 è 3h2, ñîîòâåòñòâåííî.Î÷åâèäíî, ñåðèè íå ïåðåñåêàþòñÿ. Íî â êàæäîé ñåðèè ïàðà (h, k) îïðåäåëÿåò êîìáèíàòîð-íûé òèï ôóëëåðåíà îäíîçíà÷íî, ÷åì è çàêàí÷èâàåòñÿ äîêàçàòåëüñòâî.Òåîðåìà î çàìêíóòîì êîíòóðå. Äîêàçàíà â [10] â âèäå ëåììû, ïðåäâàðÿþùåé äîêà-çàòåëüñòâî òåîðåìû î ñóùåñòâîâàíèè ôóëëåðåíà Cv áåç êîíòàêòèðóþùèõ ïåíòàãîíîâ (ï.3). Òåîðåìà ïîêàçûâàåò, ÷òî ÷èñëî ïåíòàãîíîâ âíóòðè ëþáîãî çàìêíóòîãî êîíòóðà íà ïî-âåðõíîñòè ôóëëåðåíà ñòðîãî îïðåäåëåíî ñàìèì êîíòóðîì: f5 = 6 + eineout, ãäå ein è eout� ÷èñëà ðåáåð, ïðèìûêàþùèõ ê êîíòóðó èçíóòðè è ñíàðóæè, ñîîòâåòñòâåííî. Îíà äà¸òâîçìîæíîñòü àëãîðèòìè÷åñêîãî ïîèñêà ïåíòàãîíîâ íà êàê óãîäíî áîëüøîé ïîâåðõíîñòèôóëëåðåíà. 175



Òåîðåìà î ñðåäíåì ðàäèóñå ôóëëåðåíà Cv. Äîêàçàíà â [8]. Ïîä ñðåäíèì ðàäèóñîì ôóëëå-ðåíà ïîíèìàåòñÿ ðàäèóñ ýêâèïëîùàäíîé ñôåðû. Îí îãðàíè÷åí ðàäèóñàìè ñôåð, âïèñàííûõâ ôóëëåðåí è îïèñàííûõ îêîëî íåãî. Ïîêàçàíî, ÷òî ñðåäíèé ðàäèóñ ôóëëåðåíà ïðîïîðöè-îíàëåí äëèíå ðåáðà ãåêñàãîíà, à êîýôôèöèåíò ïðîïîðöèîíàëüíîñòè ϕ(v) òàáóëèðîâàí äëÿ
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The Delaunay Tessellation Field Estimator for CosmicStructure.Rien van de WeygaertKapteyn Astronomical Institute, University of Groningen, Netherlands.weygaert@astro.rug.nlWe review the analysis of the Cosmic Web by means of an extensive toolset based on the useof Delaunay and Voronoi tessellations. The Cosmic Web is the salient and pervasive foamlikepattern in which matter has organized itself on scales of a few up to more than a hundredMegaparsec. The weblike spatial arrangement of galaxies and mass into elongated �laments,sheetlike walls and dense compact clusters, the existence of large near-empty void regions andthe hierarchical nature of this mass distribution are three major characteristics of the comsicmatter distribution.First, we describe the Delaunay Tessellation Field Estimator. Using the unique adaptivequalities of Voronoi and Delaunay tessellations, DTFE infers the density �eld from the(contiguous) Voronoi tessellation of a sampled galaxy or simulation particle distribution anduses the Delaunay tessellation as adaptive grid for de�ning continuous volume-�lling �eldsof density and other measured quantities through linear interpolation. The resulting DTFEformalism is shown to recover the hierarchical nature and the anisotropic morphology ofthe cosmic matter distribution. The Multiscale Morphology Filter (MMF) uses the DTFEdensity �eld to extract the diverse morphological elements - �laments, sheets and clusters -on the basis of a ScaleSpace analysis which searches for these morphologies over a range ofscales. Subsequently, we discuss the Watershed Void�nder (WVF), which invokes the discretewatershed transform to identify voids in the cosmic matter distribution. The WVF is able todetermine the location, size and shape of the voids. The watershed transform is also a keyelement in the SpineWeb analysis of the cosmic matter distribution. Finding its mathematicalfoundation in Morse theory, it allows the determination of the �lamentary spine and connectedwalls in the cosmic matter density �eld through the identi�cation of the singularities andcorresponding separatrices. The �rst results of a direct implementation on the Delaunaytessellation itself are presented. Finally, we describe the concept of Alphashapes for assessingthe topology of the cosmic matter distribution.
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