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Plenary talks

A survey on spherical designs and Euclidean designs

Eiichi Bannai

Kyushu University, Japan.
bannai@math.kyushu-u.ac.jp

Our aim is to study good subsets consisting of finitely many points of the sphere and/or of
Euclidean space.

Sometimes we consider not only finite subsets but also finite subsets with weight functions,
i.e., cubature formulas in analysis. In this talk, we start with the definition of spherical ¢-design
due to Delsarte-Goethals-Seidel (1977). Then we study spherical ¢-designs from the viewpoint
of algebraic combinatorics. Here, association schemes play an important role. There are natural
lower bounds for the size of spherical ¢-designs, and those which attain one of such lower bounds
are called tight spherical ¢-designs. We discuss the known examples of tight spherical ¢-designs,
and survey the current status of the classification of tight spherical ¢-designs.

Another main purpose of this talk is to discuss the concept of Euclidean t-designs which are
two step generalization of spherical ¢-designs. Natural lower bounds for the size of Euclidean
t-designs, as well as the concept of tight Euclidean ¢-designs will be discussed. We review the
examples and the current status of the classification problem of tight Euclidean ¢-designs. Some
highlights will include our recent complete classification of tight Euclidean 9-designs on two
concentric spheres (due to Etsuko Bannai and myself), as well as the new discovery of a tight
6-design on two concentric spheres (due to Etsuko Bannai, Junichi Shigezumi and myself).
We discuss the connection between Euclidean designs and the theory of cubature formulas
in analysis, and also discuss the role of coherent configurations (generalization of association
schemes) in the study of Euclidean t-designs.



Extremal Problems for Convex Lattice Polytopes

Imre Barany

Alfred Renyi Institute of Mathematics, Hungary and University College London, United
Kingdom.
barany@renyi.hu

Abstract. In this survey talk I will present several extremal problems, and some solutions,
concerning convex lattice polytopes. A polytope is called a lattice polytope if all of its vertices
belong to the integer lattice Z<. Let P(n,d) denote the family of all convex lattice polytopes,
of positive volume, in R? with n vertices. The following extremal problems will be considered.

1. minimal volume for P € P(n,d),
2. minimal surface area for P € P(n,d),
3. minimal lattice width for P € P(n,d),

4. maximal n such that a (large) convex set K C R? contains and element of P(n,d), in
other words, the maximal number of lattice points in K that are in convex position.

These problems are related to a question of V I Arnold from 1980 asking for the number
of (equivalence classes of) lattice polytopes of volume (at most) V' in d-dimensional space.
Here two convex lattice polytopes are equivalent if one can be carried to the other by a lattice
preserving affine transformation.



Boundary rigidity, volume minimality, and minimal
surfaces in L.: a survey'

Dima Burago

Penn State University, USA.
dburago@gmail.com

A Riemannian manifold with boundary is said to be boundary rigid if its metric is uniquely
determined by the boundary distance function, that is the restriction of the distance function to
the boundary. Loosely speaking, this means that the Riemannian metric can be recovered from
measuring distances between boundary points only. The goal is to show that certain classes of
metrics are boundary rigid (and, ideally, to suggest a procedure for recovering the metric).

To visualize that, imagine that one wants to find out what the Earth is made of. More
generally, one wants to find out what is inside a solid body made of different materials (in other
words, properties of the medium change from point to point). The speed of sound depends on
the material. One can "tap"at some points of the surface of the body and "listen when the
sound gets to other points". The question is if this information is enough to determine what is
inside.

This problem has been extensively studied from PDE viewpoint: the distance between
boundary points can be interpreted as a "travel time'"for a solution of the wave equation.
Hence this becomes a classic Inverse Problem when we have some information about solutions
of a certain PDE and want to recover its coefficients. For instance such problems naturally arise
in geophysics (when we want to find out what is inside the Earth by sending sound waves),
medical imaging etc.

In a joint project with S. Ivanov we suggest an alternative geometric approach to this
problem. In our earlier work, using this approach we were able to show boundary rigidity for
metrics close to flat ones (in all dimensions), thus giving the first class of boundary rigid metrics
of nonlIconstant curvature beyond two dimensions. We were now able to extend this result to
include metrics close to a hyperbolic one.

The approach is grew up from another long-term project of studying surface area functionals
in normed spaces, which we have been working on it for more than ten years. There are a number
of related issues regarding area-minimizing surfaces in Riemannian manifold. The talk gives a
non-technical survey of ideas involved. It assumes no background in inverse problems and is
supposed to be accessible to a general math audience (in other words, we will not get into any
technical details of the proofs).

Lon a joint work with S. Ivanov.



On the polyhedral product functor: a method of
decomposition for moment-angle complexes

Frederic Cohen

University of Rochester, USA.
cohf@math.rochester.edu

Spaces which are now called (generalized) moment-angle complezes or values of the “polyhedral
product functor” have been studied by topologists since the 1960’s thesis of G. Porter. In the
1970’s E. B. Vinberg developed some of their features. In the late 1980’s S. Lopez de Medrano
developed beautiful properties of intersections of quadrics with recent further developments in
joint work with S. Gitler.

In seminal work during the early 1990’s, M. Davis and T. Januszkiewicz introduced
manifolds now often called quasi-toric manifolds. They showed that every quasi-toric manifold
is the quotient of a moment-angle complex by the free action of a real torus. The moment-angle
complex is denoted Z(K;(D?, S')) where K is a finite simplicial complex.

The integral cohomology of the spaces Z(K;(D? S')) has been studied by Goresky-
MacPherson, Buchstaber-Panov, Panov, Baskakov, Hochster, and Franz. Among others who
have worked extensively on generalized moment-angle complexes are Notbohm-Ray, Grbic-
Theriault, Strickland and Kamiyama-Tsukuda. Buchstaber-Panov synthesized several different
developments in this subject. The direction of this lecture is guided by work of Denham-Suciu.

This lecture is a survey of recent work on generalized moment-angle complexes as well as
related spaces. One of the results given here is a natural decomposition for the suspension of
the generalized moment-angle complex, the value of the suspension of the “polyhedral product
functor".

Since the decomposition is geometric, an analogous homological decomposition for a
generalized moment-angle complex applies for any homology theory. This last decomposition
specializes to the homological decompositions in the work of several authors cited above.
Furthermore, this decomposition gives an additive decomposition for the Stanley-Reisner ring of
a finite simplicial complex extended to other natural settings. Applications to the real K-theory
of moment-angle complexes as well as associated cup-product structures are given. Applications
to robotic motion are illustrated via video clips.

This lecture is based on joint work with A. Bahri, M. Bendersky, and S. Gitler. The
application to robotics is based on joint work with D. Koditschek and G. C. Lynch.
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Sets of links of vertices of triangulated manifolds and
combinatorial approach to Steenrod’s problem on
realisation of cycles

Alexander Gaifullin!

Moscow State University, Russia.
Institute for Information Transmission Problems, Russia
gaifull@higeom.math.msu.su

To each triangulated manifold one can assign the set of links of its vertices. The link of a
vertex describes the local combinatorial structure of the triangulation in a neighbourhood of
the vertex. Thus the set of links of vertices of a triangulation can be interpreted as the set of
local combinatorial data characterizing the triangulation. We consider a compatibility problem
for such local combinatorial data. This problem can be formulated in the following way. For
a given set of combinatorial spheres, does there exist a triangulated manifold with such set of
links of vertices? We are mostly interested in an oriented version of this problem. Our aim is to
obtain a non-trivial sufficient condition for compatibility of a set of links of vertices. We shall
describe an explicit construction that, under certain natural conditions, allows us to realise
a multiple of a given set of oriented combinatorial spheres as the set of links of vertices of a
combinatorial manifold.

Further, we are going to discuss an application of this construction to N. Steenrod’s problem
on realisation of cycles. It is well known that according to a result of R. Thom, any n-dimensional
integral homology class z of any topological space X can be realised with some multiplicity by
an image of an oriented smooth closed manifold N™. Our new approach is based on an explicit
combinatorial procedure for resolving singularities of a cycle. We give an explicit combinatorial
construction that, for a given homology class z, yields a manifold N™ and its mapping to X
which realises the class z with some multiplicity. Moreover, the obtained manifold N™ appears
to be a finite-fold non-ramified covering over a very interesting special manifold M™, which can
be regarded either as an isospectral manifold of symmetric tridiagonal real (n + 1) x (n + 1)-
matrices or as a small covering over a permutohedron.

! The work is partially supproted by the Grant of the President of Russian Federation for Support of Young
Russian Scientists (grant 4220.2009.1) and the Russian Foundation for Basic Research (grant 08-01-00541).
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Packing and Covering of Convex Bodies

Peter Gruber

Vienna University of Technology, Austria.
peter.gruber@tuwien.ac.at

1 Introduction

Let C' be an o-symmetric convex body and L a lattice in E¢. Then 6(C) and 9(C) denote
the maximum lattice packing, resp. the minimum lattice covering density of C'. Let o0 > 0 be
maximum and ¢ > 0 minimum such that L provides a packing of oC' and a covering of oC.
Then §(C, L) and ¥(C, L) are the densities of this packing resp. this covering. Let k(C, L) be
the kissing number of the lattice packing of oC' provided by L and k(C),k(C) the minimum,
resp. maximum kissing number of a lattice packing of C' of maximum density.
Over the last hundred years important contributions to the following problems have been
given:
(i) Upper and lower estimates for 6(C'), 9(C) and §(B%),9(B?) (Minkowski-Hlawka, Rogers).
(ii) Upper and lower estimates for k(C, L), k(C), k(C) (Minkowski, Swinnerton-Dyer).
(iii) Criteria for local maxima of §(B%, L) and local minima of ¥(B?, L) (Voronoi, Barnes and
Dickson, Delone et al, Schiirmann and Vallentin).

Concerning the following problems, not much progress has been achieved.

(iv) Uniqueness of densest lattice packings and thinnest lattice coverings.

(v) Determination of densest lattice packings and thinnest lattice coverings, algorithms.
(Exception: Betke-Henk)

In this lecture we make some remarks on problems (iv), (iii) and (ii).

2 Uniqueness of Densest Lattice Packing and Thinnest Lattice
Covering

In the rare cases when the densest lattice packings or the thinnest lattice coverings of a convex
body are known, these results may, sometimes, be interpreted of (possibly weak) uniqueness
results. In the case of BY there are, up to rotation, only finitely many densest lattice packings.
This is a consequence of a theorem of Voronoi. Analogous statement holds for coverings as
shown by Schiirmann and Vallentin. Except for these cases we are not aware of any pertinent
uniqueness theorem.

Using Baire categories, one can prove the following results

Theorem 1. There is a constant a(d) > 1, such that for a generic o-symmetric convex body
C in E? there are at most a(d) lattice packings of maximum density. For d = 2,3 one may put
a(d) = 1.

Theorem 2. There is a constant b(d) > 1, such that for a generic o-symmetric convex body
C in E? there are at most b(d) lattice coverings of minimum density. For d = 2 one may put

b(d) = 1.

12



Problem 1. Show that a(d) = b(d) = 1 for all d,

i.e., the densest lattice packings and the thinnest lattice coverings of a generic /bo-symmetric
convex body are unique in all dimensions.

3 Lattice Packings and Coverings of Extreme Density

A classical criterion of Voronoi says that a positive definite quadratic form on E? is extreme
(i.e. locally maximum among all neighbouring form) if and only if it is perfect and eutactic.
Equivalently, a lattice packing of B? has locally maximum density if and only if it is perfect
and eutactic.

Using the following refined notions of maximality of (local, upper)

semi-stationarity,
stationarity,
maximality, and
ultra-maximality

and the Voronoi type notions of

semi-eutaxy,
eutaxy, and
perfection

the following results hold:

Theorem 3. The following statements on B%, L, § hold:
(i) L is semi-stationary if and only if it is semi-eutactic.
(ii) No lattice is stationary.
(iii) L is maximum if and only if it is perfect and eutactic.
)

(iv) L is ultra-maximum if and only if it is perfect and eutactic.

Statement (iii) is Voronoi’s criterion. The unexpected consequence is that each lattice packing
of maximum density has already ultra-maximum density.

Using suitable generalizations of the extremum and Voronoi type notions stated earlier, one
can prove the following partial extension of Theorem 3, where C' is a smooth and strictly convex
o-symmetric convex body.

Theorem 4. The following statements on C', L, hold:

(i) L is semi-stationary if and only if it is semi-eutactic.
(ii) No lattice is stationary.
(iii) L is ultra-maximum if and only if it is perfect and eutactic.

The problem to characterize maximum lattices remains open.

Problem 2. Show that in sufficiently high dimensions for a generic o-symmetric convex body
C the densest lattice packing is unique and ultra-maximum.

13



For coverings we could prove only the following criterion, where we used the notions of (local,
lower) semi-stationarity,

stationarity, and
ultra-minimality

and the Voronoi type notions of

para-completeness,
completeness, and
ultra-completeness.

Theorem 5. For B, L,9 the following statements hold:
(i) L is semi-stationary if and only if it is para-complete.
(ii) L is stationary if and only if it is complete.

(iii) L is ultra-minimum if and only if it is ultra-complete.
The problem to characterize minimum lattices remains open.

Problem 3. Extend Theorem 5 to o-symmetric convex bodies and show that for a generic
o-symmetric convex body the thinnest lattice covering is unique and ultra-minimum.

4 Kissing Number of Generic Convex Bodies

A result of Swinnerton-Dyer implies that for each o-symmetric convex body C holds

kE(C) > d(d+1),

while the author has shown that in the generic case holds
k(C) < 2d°.

(In the general case k(C) < 3% — 1 by an old estimate of Minkowski.)

Problem 4. Show that in the generic case the densest lattice packing is unique and

E(C) = &(C) = 242

References

[1] Gruber, P.M., Convex and discrete geometry, Grundl. Math. Wiss. 336, Springer, Berlin, Heidelberg, New
York 2007

[2] Gruber, P.M., Application of an idea of Vorono~i to lattice packing, in preparation

[3] Gruber, P.M., Extremum properties of lattice packing and covering with circles, in preparation

[4] Gruber, P.M., Vorono™i type criteria for lattice coverings with balls, in preparation

[5] Gruber, P.M., On the uniqueness of lattice packing and covering of extreme density, in preparation

[6] Gruber, P.M., Application of an idea of Vorono~i, a report, in preparation
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The Quasi-triangulation and The Beta-complex: Theory
and Applications

Deok-Soo Kim

Hanyang University, Korea.
dskim@hanyang.ac.kr, http://voronoi.hanyang.ac.kr

The Voronoi/Delaunay structures are everywhere in nature and useful for understanding
the spatial structure of a point set. Being powerful computational tools, their generalization
has been made in various directions including the Voronoi diagram of spherical balls. The
Voronoi diagram of spherical balls nicely defines the proximity among the balls where the
Euclidean distance is used from the spherical boundary of balls. Like its counterparts of the
ordinary Voronoi diagram of points or the power diagram, the dual structure can be more
convenient in both representing and traversing the topology structure of the Voronoi diagram.
However, unlike the Delaunay triangulation and the regular triangulation, the dual structure of
the Voronoi diagram of balls, the quasi-triangulation, is not a simplicial complex and creates a
number of anomaly cases which cause difficulties in the representation and traversal of topology.

This talk will introduce the Voronoi diagram of balls and its quasi-triangulation, particularly
in the three-dimensional space. Given its definition, the properties of the quasi-triangulation,
including the anomalies, will be presented with the underlying data structure to store its
topology. Based on the quasi-triangulation, we define a new geometric structure called the beta-
complex which concisely yet efficiently represents the proximity among all spherical balls within
the boundary of the input ball set, where its boundary is appropriately defined. It turns out that
thus defined the beta-complex can be used to efficiently solve geometry and topology problems
for the ball set. Among many potential application areas, the structural molecular biology
is the utmost application area because the beta-complex immediately and efficiently solves
many geometry problems related to important structural molecular biology problems: Examples
include the computation of the molecular surface, the extraction of pockets on the boundary
of molecule, the computation of areas of various types of surfaces defined on a molecule, the
computation of various kinds of volumes defined on a molecule, the docking simulation, etc. We
will also demonstrate our molecular modeling and analysis software, BetaMol, which is entirely
based on the unified, single representation of the quasi-triangulation and the beta-complex.
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Cohomological rigidity problems in toric topology

Mikiya Masuda

Osaka City University, Japan.
masuda@sci.osaka-cu.ac.jp

Cohomological rigidity problems in toric topology

Classification of compact smooth toric varieties (which we call toric manifolds) as varieties
reduces to classification of their fans as is well-known. However, not much is known for
classification of toric manifolds as smooth manifolds. One interesting and naive question is

Cohomological rigidity problem for toric manifolds ([3]). Are two toric manifolds
diffeomorphic (or homeomorphic) if their cohomology rings are isomorphic as graded rings?

Some partial affirmative solution and no counterexample is known to the problem so far.
Similar questions can be asked for polytopes (|1]), real toric manifolds (|2]) and symplectic toric
manifolds ([4]). In this talk I will discuss these problems.

References

[1] S. Choi, T. Panov and D. Y. Suh, Toric cohomological rigidity of simple convex polytopes, arxiv
0807.4800, to appear in Jour. London Math. Soc.

[2] Y. Kamishima and M. Masuda, Cohomological rigidity of real Bott manifolds, Algebraic &
Geometric Topology 9 (2009) 2479-2502

[3] M. Masuda and D. Y. Suh, Classification problems of toric manifolds via topology, Toric Topology,
Contemp. Math. 460 (2008), 273-286, arXiv:0709.4579.

[4] D. McDuff, The topology of toric symplectic manifolds, arXiv:1004.3227
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What can we do with Diophantine problems and what we
cannot do

Yuri Matiyasevich

Saint-Petersburg branch of Steklov Mathematical Institute, Saint-Petersburg.
yumat@pdmi.ras.ru, http://logic.pdmi.ras.ru/"yumat

In the talk I'll survey numerous theorems (obtained mainly by logicians and computer
scientists) about impossibility of algorithms for diverse Diophantine problems. However, such
“negative” results are often obtained as corollaries of “positive” theorems about possibilities to
construct Diophantine problems with special properties. Below are just two examples.

1. We can find a particular polynomial P(a,z1,...,x,) with integer coefficients such that

e for every value of the parameter a the equation
P(a,z1,...,x,) =y +4Y (%)
has at most one solution;

e for every function §(a) defined and effectively computable for all values of a there is a
number ag such that for a = ag the equation (%) has a solution x; = x14,...,2, =
Tnp,Y = yp and this (unique) solution satisfies the inequality

max{r1 g,...,Tns, Ys} > Llag).

In other words, () is a “principally uneffectivizable” equation, that is, we can bound the number
of its solutions (by 1 for every value of the parameter) but cannot bound solutions themselves
by any computable function of the parameter.

Open problem. Could we replace (x) by a suitable genuine Diophantine equation, that is,
without exponentiation?

2. We can find natural numbers d and n such that for every polynomi-
al P(ay,...,am,x1,...,x,) with integer coefficients (having any degree and arbitrary number of
variables) we can effectively construct another polynomial Q(ay, ..., am,y1,- .., yn) with integer
coefficient with m + n variables having degree d with respect to variables yy, ..., y, and such
that both Diophantine equations

P(ay,...,Qm, X1, ...,2,) =0 ()
and

Qat, . m, Y1,y Yn) =0 ( * %)
are solvable (in xi,...,z, and y1,...,yn respectively) for the same values of the parameters
A1y .oy Q.

In other words, the traditional classifications of difficulties of Diophantine equations

(“equations of degree 17, “equations of degree 27, ..., and “equations in one unknown”, “equations
in two unknowns”; ...) collapse from some point on.
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Today we know that for such universal bound (d,n) we can take any of the pairs

(4,58), (8,38), (12,32), (16,29), (20, 28), (24,26), (28, 25),
(36,24), (96,21), (2668, 19), (2 x 10°,14), (6.6 x 10%3, 13),
(1.3 x 10*,12), (4.6 x 10*,11), (8.6 x 10*,10), (1.6 x 1015, 9)

in the case when the unknowns range over natural numbers; in the case when the unknowns
range over integers the values are a bit bigger. If we allow (iterated) usage of exponential
function 2% in construction of equation (* %), then the number of unknowns can be as small
as n = 3.

Open problem. Could we find similar universal bound (d,n) where d would be the total
degree of the polynomial Q(ay,...,am,y1,---,Yn), that is, with respect to all the variables

&17"'aam>yla"'>yn?

References

[1] Marugacesuu FO. B. Jecamasn npobaema uavbepma. Hayka, @usmaraur, Mocksa, (1993). English
translation: Matiyasevich, Yu. V. Hilbert’s Tenth Problem. MIT Press, Cambridge (Massachusetts)
London (1993). French translation: Matiiassevitch Youri, Le diziéme Probléme de Hilbert, Masson,
Paris Milan Barselone (1995). URL: http://logic.pdmi.ras.ru/ yumat/H10Pbook.

Effective results in diophantine equations

Yuri Nesterenko

Moscow State University, Moscow.
nester@orc.ru

We plan to give a survey of effective results and methods concerning estimates for the number
of solutions of diophantine equations as well as results concerning bounds for the solutions.

1. Discussion of Delone’s results about diophantine equations.

2. Approximation of algebraic numbers by rationals (from A. Thue to K. Roth).

3. Bounds for linear forms in algebraic numbers and Subspace Theorem (W. Schmidt).

4. Linear forms in logarithms of algebraic numbers (A. Gelfond, A. Baker and followers).
Emective bounds for solutions of diophantine equations.

5. Catalan’s problem.

6. Algorithms and computers.
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Number-theoretical properties of hyperelliptic fields.

Vladimir Platonov
NIISI RAS, Moscow.

platonov@niisi.ras.ru

Resonance varieties of arrangement complements, Milnor
fiber, and Bernstein polynomials

Sergey Yuzvinsky

University of Oregon, USA.
yuz@oregon.edu

In the talk we recall the definition of the resonance varieties and their main properties for
hyperplane complements. Then we discuss their most recent applications to cohomology of
Milnor fiber and roots of Bernstein polynomials for products of linear forms.
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Section “Geometry”

The extremal spheres theorems'

Arseniy Akopyan

Institute for Systems Analysis, Moscow.
akopjan@gmail.com

Consider a polygon P and all neighboring circles (circles going through three consecutive
vertices of P). We say that a neighboring circle is extremal if it is empty (no vertices of P
inside) or full (no vertices of P outside). It is well known that for any convex polygon there
exist at least two empty and at least two full circles, i.e. at least four extremal circles. In 1990
Schatteman considered a generalization of this theorem for convex polytopes in d-dimensional
Euclidean space. Namely, he claimed that there exist at least 2d extremal neighboring spheres.

We show that there are certain gaps in Schatteman’s proof. His proof is based on the
Bruggesser-Mani shelling method. We show that using this method it is possible to prove that
there are at least d + 1 extremal neighboring spheres. However, the existence problem of 2d
extremal neighboring spheres is still open.

! This is a joint work with Alexey Glazyrin, Oleg Musin, Alexey Tarasov.

20



Algebra versus analysis in the theory of flexible polyhedra

Victor Alexandrov!

Sobolev Mathematical Institute, Novosibirsk.
alex@math.nsc.ru

A polyhedron (more precisely, a polyhedral surface) is said to be flexible if its spatial shape
can be changed continuously due to changes of its dihedral angles only, i. e., if every face remains
self-congruent during the flex. In other words, a polyhedron F; is flexible if it is included in a
continuous family {FP;}, 0 < t < 1, of polyhedra P, such that, for every ¢, the corresponding
faces of Fy and P; are congruent while polyhedra F, and FP; are not congruent. In general,
self-intersections are possible both for Py and P,. Without loss of generality we assume that the
faces of the polyhedra are triangular.

Flexible self-intersection free sphere-homeomorphic polyhedra in Euclidean 3-space were
constructed by R. Connelly [3]. During last 30 years, many non-trivial properties of flexible
polyhedra were discovered. We formulate two of them in a form that is convenient for our
purposes.

Let P be a closed oriented polyhedron in R let E be the set of its edges, let |¢| be the
length of edge ¢, and let «(¢) be the dihedral angle of P at edge ¢ measured from inside of P.
The sum |

M(P) =3 3 1 (x — a(0)
teE
is called the total mean curvature of P.

Theorem 1. Let Py be a flewible polyhedron in R3 and let {P;}, 0 <t < 1, be its flex. The
total mean curvature M(P,) is independent of t.

Theorem 1 was obtained by R. Alexander [1] as an obvious corollary of Theorem 2, while
the latter was proved in [1] with the help of the Stokes theorem, i.e., by means of Analysis.

Theorem 2. Let P be a closed oriented polyhedron in R3, let w be its infinitesimal flez,
and let P(t) = {r + tw|r € P}. Then &|_ M(P(t)) = 0.

Another important property of the flexible polyhedra is given by the following theorem.

Theorem 3. If { P} is a flex of an orientable polyhedron in R3, then the oriented volume
of P, is constant in t.

Theorem 3 was obtained by I.Kh. Sabitov [4] as an obvious corollary of Theorem 4, while
the latter was proved in [4] with the help of the theory of resultants, i.e., by means of Algebra.

Theorem 4. For the set Py of all (not necessarily flexible) closed polyhedra in R® with
triangular faces and with a prescribed combinatorial structure K there exists a universal
polynomial px of a single variable whose coefficients are universal polynomials in the edge
lengths of a polyhedron P € Pk and such that the oriented the volume of any P € Pk is a root
of Pk-

We prove that Theorem 1 cannot be proved by means of Algebra and Theorem 3 cannot
be proved by means of Analisis. In particular, we prove the followng theorem that may be of
indepented interest.

Theorem 5. The total mean curvature of any closed oriented polyhedron in R?® is not an
algebraic function of its edge lengths.

Full text of this talk is available in [2].

!The author is supported by the Russian Foundation for Basic Research (grant 10-01-91000-ANF)
and the Federal Program ‘Research and educational resourses of innovative Russia in 2009-2013’ (contract
02.740.11.0457).
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On submanifolds of negative curvature in Euclidean spaces

Yuri Aminov

B.Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, Ukraine.
aminov@ilt.kharkov.ua

In the theory of submanifolds with negative curvature there exist some number of interesting
and unsolved problems, connected with influence of curvature and codimention on submanifold.

We will exposer results about isometric immersions of the Lobachevsky space into Euclidean
spaces, as well we will give one method to construct different isometric immersions with non
flat normal connection.

By using the Rozendorn surface, that is an isometric immersions of the Lobachevsky plane
into E° in form of regular surface F'?, we construct 3-dimensional submanifold £ in ', contains
F? and such that the sectional curvature of F for plane, tangent F? | is negative and separate
from zero.
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Metrpudeckue cBoiicTBa jJoMaHblX IloHcelie

EBrenunii ABkceHTHEB

Mockosckuii TocymaperBennbiii Yuauepcuret, MockBa.
avksentjev@mail.ru

Teopembl 0 3aMbIKaHUM, WM TeopeMbl Tuia [loHCe/e, MHUPOKO U3yvarOTCsd B JIMTEPATYPE
U HPUMEHSIOTCS B KJIACCHMYECKON IeOMEeTPU, TEOPUH aIredpa-udecKux KPUBbIX, KOMILJIEKCHOM
ananuse, quddepennuagbubx ypasaenusx (cum. 6ubsmorpaduio B [2|11[4]). Mbr orpannanmcs
CJIydaeM JIBYX OKPY:KHOCTEIA.

Besze nanee o u 3 - nBe OKpyKHOCTH ([ JIe2KUT BHYTPU «v) pajuycoB R, r, paccrosiHue
MeKJIy TeHTpaMu KOTOpbIX paBHo d. ITox somanoit TToncene sTux oKpyzKHOCTEH OyaeM HOHH-
MaTh JIOMAHYIO V1 . ..U, Y KOTOPOil Bce BepruHbl - Ay, Ag, ..., A,y - JIeKaT HA OKPYZKHOCTH
Q, & BCE 3BEHbs - U1, Vg, ..., U, - Kacatorcsa (. Ecam momanas 3amkuyTa, T.e. A, = Ay, u ne
HMEeeT caMollepe-cedeHnii, To OyJeM ee Ha3bIBaTh MHOIOYTOJbHAKOM IloHcesne.

MpbI mpecTaB/IsgeM CIeyIOIne Pe3yIbTaTh:

1) mosmyueno obobiienne (meopema 1) U HOBOE IOKA3aTEJILCTBO (MEOMETPH-TYECKOE) TEOPEMbI

Pamnua n Kamnvama [1];

2) nostyveH oOMmMil MPUHIMIT HAXOXK/IeHusT (DOPMYJT HA YCJIOBUST 3aMbIKAHUsI [T JIBYX OKPY K-

HoCTell (meopema 2) u

3) cBa3b TakuX HOPMYI I n U 2n (meopema 3);

4) moJydeHbl YCJIOBHUS 3aMbIKAHUs [T TOMaHbIX [LoHcese, 0bobaomnue n3BecTHbie (hOPMYJIbI

Ditepa st n = 3 u Pycca s n = 4, U3 KOTOPBIX BbIBeIeHBI (hOpMyJIbl it n = 6 u n = 8.
Teopema 1. I[Tycmo vy ... v, - somanas IHonceae o u B ¢ wavarom X u xonuom Y, a 36eHbA

v u v, kacatomea B 6 moukar X' u'Y’' coomsemcmeenno. Tozda 0as 6cex Maxus AOMAHLLT
Xy
XX'+YY

O6o3HauNM JaHHYIO Beqnauny 4epes ky(«, 3). 13 6osbioi Teopemsr [Toncene [5] ciemyer,

9TO BCe Takue mpsiMbie X Y KacaloTcs OTHON OKPYKHOCTH 7, cOocHOM ¢ o u . Payma u Kaymvan

YCTAHOBHJIH, 9TO ka(cv, ) = %. Orcroma caeayior u3pecTHbie hOpMYIIbl Ditiepa

- BEAUYMUHA NMOCTMOAHHAA.

1 11
F—d Red r "3

u Pycca
1 1 1

+ —
(R—d)? (R+d)? r?

Jlasiee MBI HAXOMUM OOIIMH HPHHIUI HOJydeHHs OpPMYJ Ha YCIOBHS 3aMBIKaHHSA. Eciam
OKPY>KHOCTH (v, [3 W 7y NPUHAJIEKAT OJHOMY IYUKY, TO JJIs JIIO0OH TOYKHM OKPY?KHOCTH (X
OTHOIIEHHUE ee CTeNneHeil OTHOCUTEILHO OKPYKHOCTEH Y 1 3 noctostHo. OBG03HAYMM 3TY BEJINIUHY
qepes ko(%). Beenem orobpazenns G; : R3 — R3, i > 2:

Gi(R.r,d) = (R \[R? + K22 — Ky (R? — 12 + @2), k),

vie k; = ko(Z) n
F.(R,r,d) = ky,—1(c,8) — 1.

Torna F,,(R,r,d) = 0 3a7aer ycaoBue cyliecTBoBanus n-yroiabauka [loHcese ajist OKpyzKHOCTe

aunp.
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Teopema 2. Oxpyorcrnocmu o u [ obaadarom n—ceoticmeom lloncene, 2de n = ny...n,,
T
n; € N. Toeda F, =F, oGy, ,0...0G, ,ede G, = Gng(i)(a,%i), t; = '111 No(5)
j=i
1=2,...,r—1, t,=1,0 €8S,.
Crenyromast TeopeMa yCTaHABIHBAECT COOTHOIIEHIE MezK Iy (bOpMyJTaMi Ha yCJIOBHE 3aMBbl-

KaHHUd I N U 2Nn.
2 2 2 2.2
Teopema 3. [T ¥n > 3 umeem Fy, (R;r;d) = F, <R; % — R; %).
U3 Teopembr 3 u dpopmyn Ditepa nu Dycca nosydaem GhoOpMyJIbt
Jutst 6-yrosbauka [Tonceste:

1 1 1
(B2 _ &) _iR?d (B2 — PP 1 4R2d 22 (RE 1 BF (B2 &)

u 174 8-yrosapHuka [loncere:

1 1 1

((RZ _ d2)2 _ 4Rr2d)2 + ((RZ _ d2)2 + 4Rr2d)2 (2T2(R2 + d2)2 _ (RZ _ d2)2)2

MpbI TakzKe uccaeyeM CBs3b JaHHbIX (hopmys ¢ u3BectHbiME dopmyaamu Kam (dopmyiia-
MM, BBIParKalOIIUMK YCJIOBHs 3aMbIKaHud JomaHnoii [Toncene B TepMuHax onpegeanTesieii cie-
[UAJIBHBIX MATPHIL).

[1] Radi¢ M., Kaliman Z., About one relation concerning two circles,

where one is inside of the other, Math. Maced. Vol 3, (2005), 45-50.
[2] IIpomacos B.10O., O6 oxuom 0606menun reopemsr [oncere, Yemexu
mat.Hayk, 61 (2006), 187-188.

|3] Hrasco A., Poncelet-tipe problems, an elementary approach, Elem.
Math., 55 (2000), 45-62.

[4] Barth W., Bauer Th., Poncelet theorems, Expositiones Mathema-
ticae, 14 (1996), 125-144.

|5] Beporce M., Teomerpusi, M. Mup. 1984.
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A survey on spherical designs and Euclidean designs

Etsuko Bannai

Kyushu University, Japan.
etsuko@math.kyushu-u.ac. jp

The concept of Euclidean t-design was first defined by Neumaier-Seidel (1988), as a two-step
generalization of the concept of spherical ¢-design. Neumaier-Seidel and Delsarte-Seidel gave
natural lower bounds of the cardinalities of Euclidean ¢-designs for even integer t. However the
natural lower bounds of the cardinalities of Euclidean - designs are already given by Moller
(1976) in more general context, i.e., in terms of cubature formula.

In this talk we give the definition of the Euclidean ¢-designs. Then introduce some basic
facts on Euclidean t-designs. Give the definition of the tightness of Euclidean t-designs. It
is known that tight t-designs on p concentric spheres in R™ have the structures of coherent
configurations if p is not so large. In particular tight ¢-designs on two concentric spheres have
the structures of coherent configurations. We discuss the classification problem of tight ¢-designs
on two concentric spheres in R™ using this property.

This is joint work with Eiichi Bannai.
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INluminating Ball-Polyhedra

Kaéroly Bezdek

University of Calgary, Canada
bezdek@math.ucalgary.ca

Let K be a convex body (i.e. a compact convex set with nonempty interior) in the d-
dimensional Euclidean space E¢, d > 2. According to Boltyanski [2| the direction v € S}
(i.e. the unit vector v of E?) illuminates the boundary point b of K if the halfline emanating
from b having direction vector v intersects the interior of K, where S ! C E¢ denotes the
(d — 1)-dimensional unit sphere centered at the origin o of E¢. Furthermore, the directions
Vi,Va,...,V, illuminate K if each boundary point of K is illuminated by at least one of
the directions vy, Vvs,...,v,. Finally, the smallest n for which there exist n directions that
illuminate K is called the illumination number of K denoted by I(K). An equivalent but
somewhat different looking concept of illumination was introduced by Hadwiger in [3]. There he
proposed to use point sources instead of directions for the illumination of convex bodies. Based
on these circumstances the following conjecture, that was independently raised by Boltyanski
[2] and Hadwiger [3] in 1960, is called the Boltyanski-Hadwiger Illumination Conjecture: The
illumination number I(K) of any convex body K in E? is at most 2¢ and I(K) = 2¢ if and
only if K is an affine d-cube.

Let K be a convex body in E? and let F be a face of K (i.e. let F' be the intersection of
a supporting hyperplane of K with the boundary of K). Recall that the Gauss image v(F') of
the face F is the set of all points (i.e. unit vectors) u € S¥~t C E¢ with the property that the
supporting hyperplane of K with outer normal vector u contains F'. It is easy to see that the
Gauss images of distinct faces of K have disjoint relative interiors in S*~! and v(F’) is compact
and spherically convex for any face F. (Recall that a set Y C S%! is spherically convex if it
is contained in an open hemisphere of S%~! and for every yi,ys € Y the shorter great-circular
arc of S¥! connecting y; with y, is in Y.) Now, let Y C S¢™! be a set of finitely many points.
Then the covering radius of Y is the smallest positive real number r with the property that the
family of (d — 1)-dimensional closed spherical balls of (angular) radii r centered at the points
of Y cover S%~!. The following, rather basic principle, can be quite useful for estimating the
illumination numbers of some convex bodies in particular, in low dimensions.

Theorem 1. Let K C EY, d > 3 be a convex body and let v be a positive real number with the
property that the Gauss image v(F) of any face F of K can be covered by a (d— 1)-dimensional
closed spherical ball of (angular) radius v in STt. Moreover, assume that there exist k points
of ST1 with covering radius R satisfying the inequality r + R < 90°. Then I(K) < k.

In what follows, sets that we are going to study, will include intersections of finitely many
congruent closed d-dimensional balls in E?. In fact, one may assume that the congruent d-
dimensional balls in question are of unit radius that is they are unit balls of E¢. Also, it is
natural to assume that removing any of the unit balls defining the intersection in question
yields the intersection of the remaining unit balls to become a larger set. The sets obtained in
this way are called ball-polyhedra. For a comprehensive list of properties of ball-polyhedra we
refer the interested reader to the recent paper [1] of the author, Langi, Naszédi and Papez.

Theorem 1 implies the following statement.

Corollary 1. Let B[X] be a ball-polyhedron in E?, which is the intersection of the closed 3-
dimensional unit balls centered at the points of X C E3.
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(i) If the Euclidean diameter diam(X) of X satisfies 0 < diam(X) < 0.577, then 1(B[X]) = 4;

(ii) If the Euclidean diameter diam(X) of X satisfies 0.577 < diam(X) < 0.774, then
I(B[X]) <5.

In connection with this, it is natural to expect a stronger result to hold namely, that the
illumination number of any ball-polyhedron in 3 is always less than 8 (in particular, maybe it
is always at most 5).

It is clear that estimates similar to Corollary 1 exist in higher dimensions. However, the
following approach based on the elegant paper [4] of Schramm is a more efficient one in
particular, if the dimension is sufficiently large. More concretely, by taking a closer look of
the proof in [4], and making the necessary modifications, it turnes out, that the main result of
Schramm [4] on estimating the illumination numbers of convex bodies of constant width can be
improved as well as extended to the following family of convex bodies that is much larger than
the family of convex bodies of constant width and includes the family of “fat” ball-polyhedra.
Thus, we have obtained the following new result.

Theorem 2. Let X C E?, d > 3 be an arbitrary compact set with Euclidean diameter diam(X)
< 1 and let B[X] be the intersection of the closed d-dimensional unit balls centered at the points
of X. Then

(V]IS

18] <4 (5) a6+ ma) (g) <sdita+ma) ()

This proves the Illumination Conjecture for all “fat” ball-polyhedra of dimension at least
15.
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O dbyHmamMeHTAIbHOM MHOTOTPAHHUKE JUCKPETHOM I'PYIIIIbI
ABUKEHIII TUIepo0InIecKoro IMPOCTPAaHCTBA

Esrennit Boiiko

Hucruryr maremarnkn un maopmarukn Akagevun Hayk Pecrmyomkm Mosrgosa, Mogosa.
gjenbonik@gmail.com

Wsan ['ymyn

Hucruryr maremarnkn u mapopmarukn Akagevun Hayk Pecrmyomkm Mosrgosa, Mosgosa.
igutsul@mail.ru

B pa6ore [1| nokaszano, 910 TpeXMepHOE HIEPOOTHIECKOe TTPOCTPAHCTBO PA30UBAETCS HOP-
MaJTbHO U MPABWJIHLHO BBIMYKJIBIMA MHOTOTPAHHUKAMU, JBYT'DAHHbLIE YIVIBI KOTOPBIX UMEIT /IBa
BH/Ia: PAIMOHAIBHBIMEA OTHOCUTE/THHO 7T U UPPAINOHAIbHBIME OTHOCUTE/IHHO T .

B nmannoit pabore moctpoen (yHIAMEHTAJIBHBII MHOTOIPAHHUK /ISl JUCKPETHON T'PYIIThI
napukennit A3, Bce AByTpaHHBIE YIVIBI KOTOPOrO HPPAIlMOHAILHBI OTHOCHTEILHO 7. Bosee Toro,
MHOZKECTBO TaKUX MHOTOTDAHHUKOB OIPe/IeIeTcs TpeMs HeMPEPhIBHBIMU TapaMeTpPaMH.

Pacemorpum B runepboIMYecKOM MPOCTPAHCTBE TPEYTOIbHYIO OUIMUpAMUIY €O BCeMU Oec-
KOHEYHO ya/ieHHbIMu Bepimaamu. Obo3nadnm ee Beprmubl Oyksavmu A, B, C, D, E, riue nBy-
rpannbie yriabl npu pebpax AB, BC' u C'A paBubl 27/3, a ocTajbHbIe 1EeCTh IBYIDAHHBIX yIJIOB
pasubl /3.

OToXKaecTBUM I'DAHH STOTO MHOTOTDAHHWKA IO CJEIYIONIell cxeme:

(4,B,D) = (A, E,C);
(C,A,D) % (C, B, B);
(A,B,E) 2 (C, D, B).

D

Torna rpynna I, mOpoXKIeHHAs JIBUZKEHUSIMU (1, P2, 3), OyaeT rpynmoi Ge3 Kpydenuii, a
ounmupamuga ABCDE byner ee dbyHIaMeHTAILHBIM MHOTOIPAHHIKOM.

Paccmorpum temepb BHyTpHu npaBuibHOro terpayipa ABCD Touky F' u pa3odbem ero Ha
YETBIPE CUMILIEKCA ¢ TPpeMsi DECKOHEYHO Y/IaJeHHBIMU BEpIIMHAMEU U OJHON COOCTBEHHOW Bep-
mmnoit FABC, FCAD, FCDB, FABC.

Tenepsb nBuzkenuem 1 "npukiaenm" rerpasap FABD k rpauu (A, E, C) rerpasapa FABC
IBI2KeHHEM o "mpukienM" Terpasap FCAD x rpann
(C,E, B) rerpasnpa EABC, w npmwxennem o3 terpasap FCDB "upuxiaenmm" X rpaxn
(A, B, E) rerpasapa EABC, a rerpasap FABC ocraBum Ha Mecre.

28



B pesynbraTe Takoil mepekaeidiKu MBI MOJYIIM MHOTOTPAHHUK C 9eTBHIPbMS BepITMHAMU HA
abCcoJIIoTe W YeThIPpbMsl COOCTBEHHBIMHU BepIIHHAMH. MeTpuka 3TOro MHOTOIDAHHHKA 3aBUCUT
OT TpexX HeNpepbIBHbIX MapamMeTpoB (KoopauHar Touku F).

Kpome Toro, Jierko jokasarb, 4TO 3a C4YeT BbIOOpa TOYKH F' 3TOT MHOIOIDAHHUK MOYKHO
c/lesIaTh BBIMYKJIBIM, & BCE JIBYIPDAHHBIE YIVIbI OY/IyT UPpPaIMOHAJbHBI OTHOCTE/JIHHO 7. ['panu
3TOI'0 MHOI'OI'DAHHUKA MOYKHO OTOXKJECTBUTH JIBUKEHUSIMU 901,902,gpg,gpggpfl,gpggng,gplgog.

O6o3HaYnM BEpIIHHBI MIOJYYeHHOIO MHOTOrpanuuka mudpamvu 1, 2, 3, 4, 5, 6, 7, 8. Torma ero
IPaHd MOYKHO OTOK/IECTBHUTD IO CXEME:

(1,2,4) &5 (1,5,7)  (1,3,4) 3 (5,3,8)
-1
(5,1,6) 25 (2,3,4)  (1,3,7) 225 (5,2,8)

(1,2,6) 255 (3,2,8) (5,2,6) =55 (5,3,7)

JIerko jokazarb, 4TO MOJIYYEHHBIII MHOIOTPAHHUK Oy1eT (DyHIaMeHTaJbHBIM MHOI'OIDAHHU-
koM rpynnsl ', a motomy pasbusaer A3 mopmaabro n npasmibno. C TOUKH 3peHHs METPHKH
MHOZKECTBO TAaKHX MHOTOTDAHHUKOB HEIIPEPBIBHO U 3aBACHUT OT TPeX HEIPEPBIBHBIX TapaAMETPOB.

[1]. Makapos.B.C. O ¢yndamernmanvrom muozozparnnure duckpemmnot 2pynno. deustcerud

npompancmea Jlobauescrozo. 'eomeTpusa TUCKPETHBIX IPYII cuMMeTpun. MaTeMaTuieckue uc-
cnenoBanud. Berm. 119. Kumunes, [HTurana, 1990, c. 110-121.
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1. Mo6bius structures and Ptolemy spaces

Two metrics d, d’ on a set X are Mdbius equivalent if for any quadruple Q = (x,y, z,u) C X
of pairwise distinct points the respective cross-ratio triples coincide, crtg(Q) = crty(Q), where

crtg(Q) = (d(x,y) - d(z,u) = d(z,2) - d(y,u) : d(z,u) - d(y, z)) € RP%

We consider eztended metrics on X for which existence of an infinitely remote point w € X is
allowed, that is, d(x,w) = oo for all z € X, x # w. We always assume that such a point is unique
if exists, and that d(w,w) = 0. We use notation X, := X \ w and the standard conventions
for the calculation with w = oo. If 0o occurs in @), say u = oo, then crt(x,y, z,00) = (d(x,y) :
d(z, z) : d(y, 2)).

A Moébius structure on a set X is a maximal collection M = M(X) of metrics on X which
are pairwise Mdbius equivalent. A topology on X is well defined by a Mdbius structure. When
a Mobius structure M on X is fixed, we say that (X, M) or simply X is a Mdbius space.

A map f: X — X' between two Mobius spaces is called Mébius, if f is injective and for all
quadruples () C X of pairwise distinct points

crt(f(Q)) = ert(Q),

where the cross-ratio triples are taken with respect to some (and hence any) metric of the
Mobius structures of X, X’. Mobius maps are continuous. If a Mobius map f : X — X' is
bijective, then f~! is Mobius, f is homeomorphism, and the Mébius spaces X, X’ are said to
be Mébius equivalent.

In general different metrics in a Mobius structure M can look very different. However if two
metrics have the same infinitely remote point, then they are homothetic.

A classical example of a Mobius space is the extended R" = R"Uoo = 5", n > 1, where the
Mobius structure is generated by some extended Euclidean metric on R”. Euclidean metrics
which are not homothetic to each other generate different Mobius structures which however are
Mobius equivalent.

A Mobius space X is called a Ptolemy space, if it satisfies the Ptolemy property, that is,
for all quadruples () C X of pairwise distinct points the entries of the respective cross-ratio
triple crt(Q) € RP? satisfies the triangle inequality. The importance of the Ptolemy property
comes from the following fact: A Mobius structure M on a set X is Ptolemy if and only if for
all z € X there exists a metric d, € M with infinitely remote point z.

The classical example of Ptolemy space is R" with a standard Mdbius structure.

We list some known results on Ptolemy spaces. A real normed vector space, which is
ptolemaic, is an inner product space (Schoenberg, 1952); a Riemannian locally ptolemaic space
is nonpositively curved (Kay, 1963); all Bourdon and Hamenstadt metrics on 0, X, where X
is CAT(—1), generate a Ptolemy space (Foertsch-Schroeder, 2006); a geodesic metric space is
CAT(0) if and only if it is ptolemaic and Busemann convex, a ptolemaic proper geodesic metric

L This is a joint work with Viktor Shroeder
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space is uniquely geodesic (Foertsch-Lytchak-Schroeder, 2007); any Hadamard space ptolemaic,
a complete Riemannian manifold is ptolemaic if and only if it is a Hadamard manifold, any
Finsler ptolemaic manifold is Riemannian (Buckley-Falk-Wraith, 2009);

A (Ptolemy) circle in a Ptolemy space X is a subset 0 C X homeomorphic to S* such that
for every quaruple (x,y, z,u) € o of distinct points the equality

|2[|yul = |zyllzul + |zullyz] (1)

holds, where it is supposed that the pair (x,z) separates the pair (y,u), i.e. y and u are in
different components of o \ {z, z}. Recall the classical Ptolemy theorem that four points x, y,
z, u of the Euclidean plane lie on a circle (in this order) if and only if their distances satisfy
the Ptolemy equality (1). Let o be a circle passing through the infinitely remote point w and
let 0, = 0 \ w. Then for x, y, z € 0, (in this order) we have |zy| + |yz| = |zz|, i.e. it implies
that o, is a geodesic, actually a complete geodesic isometric to R.

A Mobius characterization of the boundary at infinity of real hyperbolic spaces 0o H"™ is
obtained by T. Foertsch and V. Schroeder, 2009.

Theorem 1. Let X be a compact Ptolemy space such that through any three points there is a
circle. Then X is Mdbius equivalent to R = 0, H" .

2. Ptolemy spaces with many circles and many automorphisms

We are interested in Mobius characterization of the boundary at infinity of rank one
symmetric space different from real hyperbolic spaces, for which the answer is given by
Theorem 1. Such a boundary is a compact Ptolemy space with many circles and automorphisms,
the property, which we formalize in the following four basic axioms. It is convenient to use term
a R-circle for a Ptolemy circle.

1. Existence axiom: through every two points in X there is a R-circle.

2. Uniqueness axiom: given a quadruple of points () C X such that the Ptolemy equality holds
for (), and three points of @) lie on a R-circle ¢ C X, then the fourth point of ) lies also on o.
3. Self-duality axiom: given a R-circle 0 C X, let ¢ : (X \ 0) X 0 — o be a map defined by
Y(z,w) € o is the closest to x point in the space X, (by Axiom 2, ¢ is well defined). Then
Y(z,p(z,w)) =wforallz € X \ o, w € o.

4. Extension axiom: any Mobius map between any R-circles in X extends to a Mobius
automorphism of X.

Conjecture 2. Let X be a compact Ptolemy space which satisfies Axioms (1)-(4). Then X is
Mdbius equivalent to the boundary at infinity of rank one symmetric space of noncompact type.

As an important step towards Conjecture 2, we have the following conjecture. For w € X,
we consider X, = X \ w as a metric space with a metric d from the Mdbius structure of X with
infinitely remote point w.

Conjecture 3. Let X be a compact Ptolemy space which satisfies Axiom 1—4. Then for every
w € X there is a submetry n, : X, — B, with the base B, isometric to an Fuclidean space
RF, k < dim X, such that any Mébius automorphism ¢ : X — X with o(w) = &' induces a
homothety © : B, — B, with 7, o @ = © o m,. Completed fibers F=FUuw of m,, called
K-circles, are homeomorphic to the sphere SP, k+p = dim X, and the following properties hold
(1x ) through any two distinct points in X there is a unique K-circle;

(2x) any K-circle and any R-circle in X have at most two points in common;
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(3k) given a K-circle F = F Uw through w € X, and z € X \ F, there is a unique R-circle
o C X through x, w that intersects F';
(4x ) given distinct K-circles F = FUw, F' = F'Uw through w € X and two R-circles through

w that intersect F', F', for any other K-circle "= F"Uw if F" intersects one of the R-circles,
then it necessarily intersects the other.

This conjecture is much plausible, at the moment we are able to prove all properties (1x)—
(4x) except the existence in (3k). Our main result is the following.

Theorem 4. Let X be a compact Ptolemy space which satisfies Azioms (1)—(4). Assume in
addition that p = 1 in the conclusion of Conjecture 3, that is, X also has properties (1x )-(4x)
with p =1 and K = C. Then X is Mobius equivalent to the boundary at infinity of a complex
hyperbolic space.
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New examples of tilings of hyperbolic spaces H" (n = 3,4,5) and new manifolds that
arise by the reconstruction of hyperbolic n-manifolds are given. Geometrical and topological
methods are elaborated for the considered cases, with lead, in particular, to the construction
of half volume manifolds.

In contrast with Euclidean spaces, the reconstruction of a tile-transitive face-to-face tiling
into one non-face-to-face tile-transitive that preserves the shape of the tile for hyperbolic spaces
seems to be more difficult. For example, tiling H? by regular non-compact octahedra of finite
volume admits only several discreet cases of such reconstructions. Below a method of tiling
reconstruction is illustrated in more details for 3-dimensional case.

Let consider only parabolic incidences of hyperfaces of the regular octahedron in Thurston’s
example (hyperbolic structure on the Whitehead links complement in S*). From fundamental
polytope we obtain a manifold with two identical components as a total geodesical boundary,
witch represents a sphere with 3 cusps. The symmetry group of these components has the
order 12 and, consequently, there are no more possibilities of gluing this component to obtain
a manifold, but it should be verified in each case. The geometry of cusps can be seen on the
orthogonal orisphere. Finally, the gluing which does not preserve the map given by hyperfaces
on boundary, yields non face-to-face incidences on the fundamental polytope. The fundamental
groups of the new manifold generate a non-face-to-face (one-time tile-transitive) tiling of the
considered hyperbolic space.

In general, if the hyperbolic manifold is constructed by synthetic methods from fundamental
polytopes with incidences of hyperfaces, for example from Coxeter polytopes, then we have the
possibility to study the total geodesic submanifolds along some hyperfaces, when they does
exist. The map of hyperfaces and the symmetry group of these submanifolds are essential in
this construction.

In 4-dimensional case we use hyperbolic manifolds obtained from the non-compact regular
24-cells |2, 3, 4]. Like in the case n = 3 we select hyperfaces with total geodisical submanifolds
situated along them. The reconstruction is done using these submanifolds. Two hyperbolic
4-manifolds, with the cusps over the most symmetric 3-dimensional Euclidean torus, are
determinedin in [4]. The new fundamental groups of reconstracted manifolds yield a non-face-
to-face tiling of the 4-dimensional hyperbolic space.

Using the geometry of first hyperbolic 5-manifolds [5] of finite volume obtained from given
below fundamental polyhedron, non-face-to-faces tilings of H° are obtained. The construction
of the fundamental polyhedron P® in H® is important itself.

Let Uss be a parabolic bundle in hyperbolic 5-dimensional space H® which determines a
regular 24-cell on the orthogonal to bundle orisphere 3*. The second identic parabolic bundle
U}, is taken along the axe of symmetry of Uy, in the opposite direction to the first bundle.
Let also Uj, be taken in the dual position to the Uy. This is possible because the regular
24-cells is a selfdual polytope. Each bundle, as a rigid solid, can be translated along the axe
of symmetry, and we have one metric parameter that controls the dihedral angle of hyperfaces
from different bundles. This non-compact polyhedron P® of finite volume, telling the hyperbolic
space H?®, permits a very simple identification of its 48 hyperfaces, which yields a 5-manifold.
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This manifold has the cusps over the most symmetric 4-dimensional Euclidean torus. The
stabilizer of any point of the torus is isomorphic to Fjy - the symmetry group of the regular
24-cells. Two-sided embedded total geodesic 4-submanifolds M7} (i=1,48) are found. It is just
the factorized symmetry hyperplanes of the polyhedron P°. Different metric reconstructions of
M?® along M* permit to obtain new 5-manifolds. The fundamental polyhedron is not Coxeter
and the hyperfaces does not form a total geodesic submanifold, but some of the new manifolds
and their fundamental polyhedron permit a reconstruction in order to obtain non-face-to-face
tiling of HP.

All these examples are refereed to non compact polyhedrons and manifolds. For the compact
cases we consider two consecutive reconstructions of the 4-dimensional Davis manifold which
yields an involution without fixed points on new manifold. The factorization of these manifolds
by the above involution gives the complete manifold whose volume is two times less that
the volume of the initial manifold. In the communication we will give some other examples
of hyperbolic n-manifolds (n=3, 4, 5) M" which possess such involution. Some of them are
obtained as metrical reconstruction of manifolds described in [7-8|.

This topological and geometrical procedure is close related to well known topic of the
combinatorial theory of groups: H N N-extension and direct product with common subgroup.

This work is partially supported by the grant 10.839.08.05 of HCSTD ASM.
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We construct a series of neighborly polytopes using theory of Gale Diagrams.
Let us choose an integer d > 2. We are going to study polytopes with n = 2d + 4 vertices
which are embedded in R??.

Definition 1. [1] A polytope in R? is called neighborly if any subset of its vertices of cardinality
< | D/2] is a face.

It is shown in [2| that given a polytope in R* with 2d + 4 vertices, one can construct
an (affine) Gale diagram, i. e. a set of black and white points (in this particular case) in
R? that are in one-to-one correspondence with the vertices of the polytope. This diagram
completely describes the combinatorics of the polytope. For example, to determine whether the
vertices vy, ..., v, of the polytope form a face consider the points pgyq ..., p, of the diagram
corresponding to the rest of the vertices. Let P be the convex hull of all black points among
Dk+1, - - -, Pn and let @ be the convex hull of all of the white ones. Then the vertices vy, ..., v
form a face iff the intersection of the relative interiors of P and () is not empty. Affine Gale
diagram of a polytope is defined up to projective equivalence.

We impose one more restriction on polytopes we are going to study: each of them should
have an affine Gale diagram with exactly d + 3 white points, and these points should form a
convex polygon.

Definition 2. A set S of 2d + 4 black and white points in R? is called a T-diagram if
1. Exactly d + 3 of the points in S are black and they form a convex polygon.
2. S is an affine Gale diagram of a neighborly polytope.

Definition 3. A neighborly polytope is called T-polytope if it has an affine Gale diagram which
is T-diagram.

Proposition 1. The following conditions are equivalent:
1. S is a T-diagram.

2. S is a set of d+ 3 black points and d+ 1 white points, black points form a convex polygon
and there is exactly one white point inside each triangle with black vertices.

Theorem 1. Two T-diagrams are combinatorially equivalent iff the corresponding T-polytopes
are combinatorially equivalent.

T-diagrams can be enumerated using 3-trees that are defined as follows:
Definition 4. A tree with the additional structure is called a 3-tree if
1. Each of its vertices is of degree 1 or 3.

2. (Additional structure) For each vertex A of degree 3, the edges incident to A are cyclically
ordered. These cyclic orderings induce cyclic order on the set of vertices of degree 1.
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Informally speaking, a 3-tree is a tree with vertices of degree 3 or 1 that is embedded in R?
where an orientation is chosen.

Definition 5. A 3-tree is called the characteristic tree of a T-diagram if there exists a one-
to-one correspondence ¢ between the points of the diagram and the vertices of the 3-tree such
that

1. The white points correspond to the vertices of degree 3, the black points correspond to
the vertices of degree 1.

2. The cyclic order on the vertices of degree 1 corresponds to the natural cyclic order of the
vertices of the (convex) (d + 3)-gon for some choice of orientation of the R? containing
the diagram.

3. A white point B is inside a triangle with three black vertices A;, A;, A, iff any two of the
three paths connecting ¢(B) with ¢(A4;), p(A;), ¢(A) have no common edges.

Theorem 2. 1. Given a T-diagram, there exists a characteristic tree. It is unique up to the
simultaneous inverting of the cyclic orders at the vertices of degree 3.

2. Given a 3-tree R with at least 8 vertices, there exists a unique (up to combinatorial
equivalence) T-diagram with characteristic tree R.

This enumeration theorem yields the following formula:

Theorem 3. Given d, the number of T-polytopes in R?? is

T, 3T, _ T _ T,
d+1l (d+3)/2—-1 n (d+3)/3—1 " d/27
2(d + 3) 4 3 2

T _ 0, ¢ N
© 165/ (x+1), €N

where

We see that this number grows exponentially as d grows.

Theorem 4. Given d and m, the number of faces of dimension m that contain a vertex A of
a T-polytope in R depends on d and m but does not depend on the polytope and the vertex A.
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The aim of my talk is to tell about some new generalizations of the classical covering theorem
of Besicovich.

Theorem of Besicovich. If F = {C(x,r;)}.ca is a family of cubes in R™ such that
SUPgea e < 00, and A is a set in R”, then there exists Ay € A such that following conditions
hold:

Eg; A - UxEA (xﬂnw); (2) mult({c(xarx)}wez‘lo) < (1(77,);

{B(I Tz }$€A0 U ]:27

where F; is a packing for any i; (4) a(n) and b(n) depends on n only.

This theorem plays an important part in the theory of functions and the measure theory
(see [5]).

Let M be a finite-dimensional space with a metric py; of a lower bounded curvature o > —oo
in sense of Aleksandrov (FDSLC).

Definitions. A family of balls {B(xz,7;)}ser in M is called a covering of Bezicovich of a
set £ C M. A family of disjoint sets is called a packing. Suppose F is a family of subsets of a
set F, then by definition, put

mult(F) = sup mult(z, F) = sup HV e F:xzeV}|.

zeFE

The value mult(x, F) is called a multiplicity of family F in the point z, and mult(F) is called
a multiplicity of family F.

By L} denote n-dimensional hyperbolic space, by E™ denote Euclidean space.

Covering Theorem. If { B(z, ;) }.cg is a covering of Bezicovich of a subset E in a complete
n-dimensional space of a lower bounded curvature ;1 > —oo in sense of Aleksandrov M such
that sup,cpr, < oo, then there exists £y C E such that following conditions hold:

. EC Uer ('T’TI)Q

2. mult({B(x, ry) brer,) < a(n,r, u), where a(n,r, ) depends on n,r, y only;
3.

b(n,r,u)

{B(I Tz }$€Eo - U ]:i?

where F; is a packing for any 4, and b(n,r, 1) depends on n, r,  only.

Remark 1. If we take a covering of Bezicovich {B(n,n)},en in R, then we see that the
condition sup,.p 7, < 0o is essentially.

Remark 2. If y > 0, then a(n,r, M) and b(n,r, M) it possible to take independent of r. If
i < 0, then we can not have do it.

Definition. A family F of compact convex sets in R” is called absolute monotone if for any
V, W € P there exists U such that W =V + U, (where V + U denote Minkowski sum) or and
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vice versa. Denote by V < W, if W =V + U. If there exists Vj such that V +x C V| for any
V € F and some x € R", then we say that a family F is bounded.

It is clear that a monotone family F of parallelotopes and a family of homothets of a convex
set is absolute monotone. Theorem. Suppose £ is a bounded absolute monotone family of
centrally symmetric convex compact sets in R™ with center in 0, A C R" and F = {B, +
T}reap,ec. Then there exists Ay C A such that following conditions hold:

El; AC Upen, B + 75 (2) mult({ B, + T}aea,) < a(n);
3

b(n)
{Bx + x}xer = U Jria
=1

where F; is a packing for any 4; (4) a(n) and b(n) depend on n only.
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It is natural to ask whether the Voronoi polytope for a lattice can be written as the
Minkowski sum of polytopes that are also Voronoi polytopes for lattices. S. S. Ryshkov answered
this question by showing that the Voronoi polytope for a point in the relative interior of an
L-type is affinely equivalent to a weighted Minkowski sum of Voronoi polytopes for the edge
forms of the L-type.

I will initiate proceedings by sketching the proof of the Lemma: A Voronoi polytope can be
written as the Minkowski sum of Voronoi polytopes if and only if the Delone tilings for the two
summands are commensurate (a notion that will be defined during the lecture). This Lemma
serves as a corner stone for a beautiful duality theory that relates commensurate Delone tilings
and the Minkowski decomposition of Voronoi polytopes; it also provides the key step in proving
Ryshkov’s Theorem. The line of argument I use will parallel that used in a preliminary version
of the duality theory relating dicings and Voronoi zonotopes.
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A point set D in R? is uniformly discrete, if there is r > 0 such that each ball of radius r
contains at most one point of D. D is called relatively dense, if each ball of radius R contains
at least one point of D. Delone sets are point sets in R? which are uniformly discrete and
relatively dense. They were introduced by B.N. Delone in order to study algebraic problems by
using geometric tools |2].

If you do a google search (or a MathSciNet search) for "Delone set"today, almost all hits have
to do with mathematical quasicrystals. Mathematical quasicrystals are Delone sets in R? which
are not periodic (i.e., they don’t possess any translational symmetry), but show a high degree of
local and global order. There is no generally agreed rigorous definition of "quasicrystal"today.
However, any expert would agree that for instance the vertex set of the famous Penrose tiling
form a mathematical quasicrystal.

Real (physical) quasicrystals were found in the 1980s by their diffraction spectrum: They
show a pure point diffraction spectrum (like a crystal), but they show also 8-fold, 10-
fold or 12-fold symmetry, which is impossible for crystals (i.e., structures with translational
symmetry). This discovery induced a lot of experimental and theoretical research, leading to
the development of a mathematical theory of quasicrystals.

Today the mathematics of Delone sets with a pure point diffraction spectrum is pretty well
understood. A central result is the following, obtained by Hof [4] for the Euclidean case and
generalized by Schlottmann [6].

Theorem 1 (Hof, Schlottmann). Each regular model set (or cut-and-project set) has pure point
diffraction spectrum.

A Delone set in R? is a model set, if it can be obtained by a projection from some higher

dimensional space in the following way:
e H alocally compact Abelian group

o A alattice in R x H
R S RIx H 2 H
U U U e 7, T are projections, such that |
D A W is injective, and mo(A) is dense

e The window W is compact (u(W) =
0)

Then D = {m(z)|x € A, m(z) € W} is a (regular) model set.

In turn, model sets have been studied already in the 70s by Meyer [5]. It was shown that
each model set is a Meyer set, and each Meyer set is a subset of a model set. A Meyer set is a
Delone set D such that D — D is uniformly discrete.

It is clear from the definitions that each lattice in R? is a model set as well as a Meyer set.
Thus both model sets and Meyer sets can be regarded as generalisations of lattices.

Within this context, one can ask a lot of interesting questions. Here we focus on three of
them.

(a) Are there Meyer sets which are not pure point diffractive?
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(b) Are there pure point diffractive sets which are not model sets?

(c) Has each model set an average lattice?

The answers are (a) yes, for instance certain selfsimilar subsets of Z¢ [3]; (b) yes, the set of
visible lattice points (which is not Delone) [1]; (¢) yes in dimensions one and two, unknown in
general (work in progress, together with N. Dolbilin and A. Garber).
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One of the most important and well known conjectures in the modern theory of
parallelohedra is the Voronoi conjecture.

The Voronoi Conjecture. Every parallelohedron in R? is affinely equivalent to a Dirichlet-
Voronoi domain of some d-dimensional lattice. The Voronoi conjecture was proved for some
particular families of parallelohedra by Voronoi, Zhitomirski and Ordin.

In all of the mentioned results proof of the Voronoi conjecture uses the methods of canonical
scaling and positive quadratic forms. The canonical scaling is a rule which we use to associate
a real number to any (d — 1)-face of a polytope to satisty some relation on this numbers for any
neighborhood of (d — 2)-dimensional face of tiling of space R.

In this talk we will discuss a way how to find a value of canonical scaling for arbitrary
parallelohedron in the shortest possible way. We will try to find the combinatorial diameter of
the parallelohedron, i.e. the diameter of the Venkov graph of the parallelohedron. Venkov graph
of the parallelohedron P is the graph whose vertices are pairs of opposite facets P and two
pairs are connected with an edge if and only if some facets from these pairs have a common
(d — 2)-face.

We will prove the following

Theorem. If parallelohedron P 1is d-dimensional zonotope, i.e. P is a d-dimensional
Minkowski sum of line segments, then the combinatorial diameter of P is not greater than

[log, d].

! This work is supported by RFBR grant 08-01-00565-a and by grant “Scientific Schools” HIII-5413.2010.1.
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O npobiieme BopoHoro jis mapaJijiejio3poB

Angpeit l'aBpuiiok

Mockosckuii rocynapcrsennsiii yuupepcurer umenn M.B../Iomonocosa, Mocksa.
ghavr7770mail .ru

[TousTre mapaJuresodapa U caM TepMuH ObLIn BBemeHbl Kpucrasiorpadom E.C. Oymgopo-
BeiM [1] (1885) Kak 0HO U3 OCHOBHBIX MOHATHI KpucTasuiorpadun. Ilaparierosdp d n3mepennii
olpeiesIsIeTcs KaK BBIMYKJIbIH SBK/IHI0B MHOTOTPAHHUK, KOTOPBI CBOMMH HapaJsiie/IbHBIMUA KO-
MHAME Pa3dHBaeT MPOCTPaHcTBO K¢ HOPMAJBHBIM 0OPA30M, TO €CTh eCJH IepecedeHne IBYX
MHOT'OT'PAHHUKOB HE IIyCTO, TO OHO €CTh UX O0Ias Iejias rpaHb HEKOTOPOW pa3sMepHOCTH.

Osna W3 OCHOBHBIX 33J@d TEOPUH MaPAJLIEI0POB — HAXOXK/IEHUE AJTOPUTMA, IIe-
PEUUCILIONEro s JaHHOI pasMepHOCTH BCe KOMOMHATOPHBIE THIIBI IapasLIeodIpoOB —
no cux 1op ocradrcs Heperrdauoil. [.X. Boponoii [6] mocrpomsn Teopuro mapasiienosapos
Jlupuxne-BopoHoro, B KOTOpoii NpuBeIIH aJIrOPUTM IepedrcIeHns BCeX KOMOMHATOPHBIX THU-
OB mapaJuie1031poB Bopororo. OH BbICKa3a/ TUIIOTE3Y O TOM, 9TO JHOOO0l mapasiiesodap
aPUHHO-IKBUBAJIEHTEH HEKOTOPpOMY mnapaJuiesnodapy lupuxiae-Boponoro. Ilox napaasenoso-
pom Jupuzae-Bopornozo Mbl nonnmaeM obsactb B E?, HOCTPOEHHYIO 110 HEKOTOPOil d-MepHOil
permarke A C E¢ 1 cocTodmniyto n3 To4uek, 11 KOTOPHIX JaHHAd TOUKa p € A ABasgerca OamzKaii-
meit cpe/in Bcex Touek pernrdTku. HeTpyiHO mMoKa3aTh, 9TO Takas 00JIACTh ABJSIETCS d-MepPHBIM
MHOTOrpanHIKOM B E? 1 1eflcTBUTEILHO SB/ISeTCS TaPAJLIe03IPOM.

Boponoit 1oka3aJj ¢BOIO TUIIOTE3y Jjisi, TaK Ha3bIBAEMbIX, IPUMUTHBHBIX TTapPaJLIeI03/POB.
[Tozauee O.K. ZKuromupckuii 7] yensma reopemy Bopororo, 1okazas rumnoresy st O4eHb MU~
POKOr0 KJIacca — JijIsi IPUMHTUBHBIX B (d — 2)-MepHBIX IPAHAX (9TO OrPAHUYEHUE SKBUBATEHTHO
TOMY, 4TO B KaxKjoii (d — 2)-MepHOii rpanu cxoagarcs poBHo 3 mapasuresnodapa). R. Erdahl (8]
JIOKa3aJI TunoTe3y BopoHOTro s mapaJiieiodapoB, KOTOpbie SBIAIOTCS 30HO0yapaMu. [locse-
HEe pe3y/brarhl Ol moaydensbl A. Opauabiv 9] wis, Tak HA3BIBAEMbIX, 3-HEPA3AOHCUMBLE
(3-irreducible) napaiesospos.

B nokazarenbcrBax Teopem Boponoro, zZKutomupckoro, OpanHa MpOUCXOJIUT MOCTPOECHHE
TaK Ha3bIBAEMOII KAHOHUYECKOII HOPMHUPOBKU:

I[Iycts T — pasbuenne mpocTpancTsa E? Ha mapasiebable KO JAHHOTO TapasLIesodapa
Py. O6o3naunm uepes3 F° MHOKECTBO BCeX i-MEpPHBIX IpaHeil 9TOro pasouenus.

Onpegnenenne. Ilycrn S"~! — mpoussonbroe MHOXKecTBO rumeprpaneit: S"~! C F*~1 pas-
ouenus 1. Kanonuueckoti nopmupoexoti S"~ ' HasbiBaerca Takag dbynkmus s : S — Ry,
9TO
1. Ecom Fy, Fy, F3 € S — runeprpanu, cxongmuecss B IpUMATUBHOIL (d — 2)-rpanu, Toraa
JJIsi HEKOTOPOTo (TakK HAa3bIBAEMOIO COIJIACOBAHHOIO) BHIOODA HAIPABJICHUIT €UMHIIHBIX
HOpMaJteil n; K sruM rpausam s(Fy)n; + s(Fy)ng + s(F3)ng =0

2. Ecom Fy, Fy, F, Fy € S ! — runeprpanu, cxojgmuecss B HenpuMuTuBHO# (d — 2)-rpanu,
TOrJA JJIsl HEKOTOPOTro (TaK HA3BIBAEMOTO COIVIACOBAHHOIO) BBIOOPA €JIMHUIHBIX HOPMaJIei
n; K stuM rpausm s(F)ny + s(Fy)ng + s(F)ng + s(F5)ny =0

K rtoueBBIM MOMEHTOM JI0KA3aTe/IHCTB [IEPEINCIeHHBIX BBIIIE TEOPEM SIBJISETCS IIOCTPOEHHE OCO-
Ooit mosmdApaIbHOil moBepxHOCTH. OHA CTPOUTCS KaK IpaduK KycOUHO-THHEHHONH (hyHKIHH
G : E? — R, Tak masbiBaeMoil srcenepampuco, Boponozo, KOTopas CTPOTO JHHEHHA Ha KazKIOM
napaJiiesnoyipe pasouenus T. C moMonp0 KAHOHUIECKOH HOPMUPOBKU OMPEIE/ISIOTCS TPUPa-
meHud rpaJueHTOB Ha CME2KHBIX I'DaHAX ,Z[aHHOfI HOHHSﬂpaHbHOﬁ IIOBEPXHOCTH.
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B cayuasgx Boponoro, 2Kuromupckoro, Opanna (KazKplii MOCIeIYONIIi 0XBATHIBAET CTPOTO
GoJtee MUPOKWI KJIACC HAPAJIET03POB) MO MOCTPOCHHON JKEHEPATPUCEe OMPEIeTISeTCs €JiH-
CTBEHHBIM OOPa30M BIHCAHHBIN B €Y Irpaduk LIHOTHIECKHI MapadoIou1. DTOT mapaboion
aUHHBIM TPpeodpa30BaHIEM MOXKHO HepeBecTr B mapaboson cepudecknii. C OMONIIBIO OTI-
THUYECKHX CBOMCTB chepruueckoro napado/ionjia MOKa3blBaeTCsd, YTO MOJIyYeHHOe U3 pa3dueHust
T upu nannom adpdurHOM Ipeobpa3oBannu pasouenue T’ gpjsiercs pa3dUeHUeM Ha TapaJiie-
Jn031pel lupuxite-Boponoro, u rumoresa B COOTBECTBYIOIINX CJIyYasX BepHA.

ABTOpOM J0Ka3aHa TeopeMa, YTBEpKIAMINAasg, IYTO YKa3aHHOe MOCTpoeHne (BYHKIUKA YKEeHepa-
TPUCHI U COOTBETCTBYIOMIEH MOJU3IPATBbHOI IIOBEPXHOCTH BO3MOZKHO JI/Tsl JIFOO0i KAHOHUYIECKOi
HOPMHPOBKH (a He TOJIBKO B ciaydasx Boponoro, 2Kuromupckoro, Opauna). B To ke Bpems
IPUBEYH IPUMED KAHOHUYECKOH HOPMUPOBKH (M COOTBETCTBYIOIIEH MOBEPXHOCTH), HE OINUCAH-
HOIT BO3JIe KaKOr0o-Jn00 3JLIMITUYIECKOTO Mmapadosonga. VI3 aTux TeopeMbl U ImpuMepa CJejiyer,
YTO CYNIECTBOBAHUS KAHOHHYECKON HOPMHUPOBKH JI/Isi HEKOTOPOT'O Hapasiie/Iodipa MOXKET OBITh
HEJIOCTATOMHO JIJIS JIOKA3ATeIbCTBA MHIOTE3bl BOPOHOTro (Kak OBLIO BO BCEX MPUBEIUHHBIX BHIIIE
CIIYUALX ).
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Approximation of convex sets by projections of convex
polyhedra
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The problem of approximation of convex sets by polyhedra with a given precision ¢ is applied,
in particular, for convex programming problems (CP) of the form: fy(z) — min, fi(z) < 0,
i=1,...,m, x € R" (f; are convex functions), i.e., finding minima of a convex function fy
on a convex domain G, given by a system of convex constraints. It is generally known that
for large dimensions n such problems may have enormous compexity. The only exceptions are
linear programming (LP) problems (fy and f; are all linear), which are efficiently solvable even
for n > 10° [1]. Thus, if one approximates the graph of fy and the domain G by polyhedra
with the precision ¢, then the CP problem is approximately reduced to the corresponding LP
problem, which can then be efficiently solved.

The problem of approximation of convex sets by polyhedra in the Hausdorff metric has
been thoroughly studied in the literature, see |2| and references therein. It is known that the
number of hyperfaces (i.e., linear constraints) of the aproximating polyhedron is bounded above
by C’el_Tn, where n is the dimension, and this estimate is sharp even for the Euclidean ball.
We analyze a new approach that reduces esseintially the number of faces for some classes of
convex domains. This approach is based on the following simple fact: an orthogonal projection
of a convex polyhedron can have much more faces than the original polyhedron. Therefore,
this is reasonable to approximate convex sets not be polyhedra in the original space, but by
projections of polyhedra in a larger space.

The idea of applying projections from larger dimensions was first proposed by A. Ben-Taal
and A. Nemirovsky for approximation of quadrics in the Hausdorff metric [3]. We extend this
approach to a wider class of convex sets. The dimensions of the approximating polyhedra are
of order C' (ln %)k, and the number of faces is usually the double of this number.

For generalizing this method to a wider class of convex functions we introduce another
approach. The idea is to approximate first graphs of univariate convex functions, by polygons,
and then, using a special inductive procedure, reduce the multivariate problem to the univariate
one. The corresponding polyhedron of a larger dimension is constructed in the inductive
procedure. The complexity of the algorithm increases to a polynomial one, since the number
of sides of the approximating polygons is estimated as C ﬁ However, this enlarges the class of
approximated functions and sets. We present an optimal (by the number of sides N.) algorithm
for univariate approximation by polygons, and elaborate a special inductive procedure to pass
to multivariate case. This allows us to approximate, for instance, the unit balls of the L,-norm,
the graph of the enthropy function, etc.

This approach of approximation by projections makes it possible, in particular, to solve
CP problems with the functions of those special classes, reducing them to LP problems. The
efficiency of this method is illustrated with several examples.
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A parallelotope is a polytope translation copies of which fill the space without gaps and
intersections by inner points. A special case of a parallelotope is the Voronoi polytope of a point
lattice. It is the closure of all points of space that are nearer to a given point of the lattice than
to other points of it.

The famous conjecture of Voronoi asserts an affine equivalence of a parallelotope to a Voronoi
polytope. This conjectutre is equivalent to an existence of a dual tiling for the tiling onto
parallelotopes.

According to general theory of tilings onto n-dimensional polytopes, two tilings are dual
if there is a one-to-one correspondence between k-faces of one tiling and (n — k)-faces of the
other one, such that the affine spaces of corresponding faces are orthogonal. It is proved in the
general theory of tilings that a primitive tiling and a tiling onto zonotopes have dual tilings
(see, for example, [1]). In the first case, the dual tiling consists of simplices. In the second one,
the dual tiling is formed by an arrangement of hyperplanes that are orthogonal to edges of the
zonotopes. This implies that the Voronoi conjecture is true when parallelotopes are primitive
or are zonotopes.

Voronoi calls a parallelotope canonically defined if it is affinely equivalent to a Voronoi
polytope. A tiling onto canonically defined parallelotopes has two types of dual tilings: the
above defined dual tiling and a topolgically dual tiling. In topologically dual tilings, spaces
of corresponding faces need not to be orthogonal. It is shown in this talk that a tiling onto
parallelotopes has a topologically dual tiling onto Delaunay polytopes.

It is well known, that if parallelotopes of a tiling are Voronoi polytopes, then the both
mutually dual tilings exist and coincide. Polytopes of the dual tiling are called Delaunay
polytopes. A Delaunay polytope corresponds to a vertex v of the tiling onto Voronoi polytopes.
It is the convex hull of the centers of all Voronoi polytopes having v as a vertex.

It is naturally to define similarly Delaunay polytopes of the tiling onto parallelotope. Akos
Horvéth proved in [2] that the centers of all parallelotopes having a common vertex are vertices
of the corresponding Delaunay polytope. But he did not prove that the such defined Delaunay
polytope is full dimensional. In this talk, this gap is filled.

An n-dimensional parallelotope P = P(0) with its center in origin can be described as
follows.

1 1
P={zeR": _épzrti <pix< ipiTti’ i€ Ip}.

Here Ip is the set of indices of pairs of opposite facets. The vector ¢; connects the center of P(0)
with the center of the parallelotope P(t;) that is adjacent to P(0) by a facet F;. The vector p;
is the facet vector of Fj.

The edges of the above defined Delaunay polytopes are parallel and equal by norm to vectors
t;. If a parallelotope is defined canonically then there is a linear map x — Qx such that p; = Qt;
for all 7 € Ip. In this case, the facet vectors p; are called canonically defined.

The map @ transforms each Delaunay polytope Pp into canonically defined Delaunay
polytope QPp. The edges of canonically defined Delaunay polytopes are parallel and equal
by norm to canonically defined facet vectors p;. The canonically defined Delaunay polytopes
form the dual tiling for the tiling onto canonically defined parallelotopes.
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I show how simple can be transformed a simplicial Delaunay polytope into canonically
defined simplex.
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The notion of cut locus, introduced by H. Poincaré in 1905, gain an important place in
global riemannian geometry. The cut locus C(x) of the point z in the riemannian manifold M
is the set of all extremities (different from ) of maximal (with respect to inclusion) shortest
paths starting at x.

The study of cut locus has long history, there are many remarkable results. S. B. Myers
for n = 2, and M. Buchner for general n, established that the cut locus of a real analytic
riemannian manifold of dimension n is homeomorphic to a finite (n — 1)-dimensional simplicial
complex.

But in most cases, to determine cut loci are quite difficult problems. There are only a
few cases where the cut loci are well understood; for example, symmetric spaces and some
homogeneous spaces (T.Sakai and M.Takeuchi), certain surfaces of revolution (M.Tanaka ans
R.Sinclair), the tri-axial ellipsoids and some Liouville surfaces (K.Kiyohara and I.) Especially
in higher dimensional case there are not any results without symmtric spaces and some singular
spaces (Vilcu and 1. ), even if quadric hypersurfaces.

In this talk, we determine the cut locus and the conjugate locus of the ellipsoid M :
St ouifa;=1(0<a, <---<ap), Let J, be the submanifolds of M defined by

2
Jo={ueM|u=0, Y ——=1} (1<k<n-1)

— Q; — Q

Let (A}, ..., A\Y) be the elliptic coordinates of p.

Theorem 1. If p & J,_1, then C(p) is an (n — 1)-dimensional closed disk which is contained
in a submanifold (possibly with boundary) defined by A, = \°.

Ifp € J,_1, then C(p) is an (n—2)-dimensional closed disk contained in J,_,. It is identical
with the cut locus of p in the (n — 1)-dimensional ellipsoid N,,_1.

Let K; be the i-th conjugate locus. For the singularities of K;, we have the following theorem.

Theorem 2. Let p be a point with u; # 0 (Vi). Then the set of singularities of the first conjugate
locus K, of p consisits of three connected components; one of them are diffeomorphic to S™2x
a cusp curve, and the interior of the other two are diffeomorphic to (immersed) D""*x a cusp
curve.

Here, D"2 denotes the (n — 2)-open disk. The boundary of the latter components are still
unclear up to now. This theorem is a higher dimensional version of the so-called Jacobi’s last
geometric statement: The first conjugate locus of a general point on a two-dimensional ellipsoid
contains exactly four cusps.

Moreover, we have the following theorem, if the ellipsoid M is enough close to the round
sphere.

!This is a joint work with K. Kiyohara, Okayama Univ.
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Theorem 3. The set of singularities of K; (2 <1i < n—2) consists of two conected components
whose interiors are diffeomorphic to

ST D% @ cusp curve, DTV x ST X a cusp curve

respectively. K, 1 is similar to K. The intersection K; N K41 is identical to the common
boundary of their singularity sets; S"27 x S*1,
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Because of analytical difficulties for higher dimension, one-dimensional random sequential
packing has received attention ( Renyi (1958)), Itoh (1980)). The one-dimensional model can be
extended to the random sequential packing of cubes. Consider the random sequential packing
of cubes of edge length 1 in a parallel position in a larger cube of edge length x. It seems to be
natural to expect for the d-dimensional extension that the limiting packing density (i) exists
and (ii) is equal to % as z tends to co, where 3 is the limiting packing density for d = 1 given
by Renyi (1958), which is called Palasti’ s conjecture. The conjecture (i) is shown by Penrose
(2001). It is known that the computer simulations do not support the conjecture (ii).

Consider the simplest random sequential packing with rigid boundary, i.e. a packing in
which cubes of edge length 2 are put sequentially at random into the cube of edge length 4,
with a cubic grid with unit edge length, in a parallel position on the grid . Consider the packing
density 74 of dimension d. The computer simulations up to dimension 11 (Itoh and Ueda (1983),
Itoh and solomon (1986)) seems to fit to 74 = d~* with an appropriate constant c.

The expected number of decrease of the packing density is shown to be less than (%)d at
each step of the random sequential packing (Poyarkov (2004, 2007) , which proves that the
expected number of cubes at the saturation is larger than (2).

Consider the simple random sequential packing with periodic boundary (random sequential
packing into torus). The case d = 1,2 gives the tiling of cubes (100 per cent packing density),
while the case 3 < d does not always give the tiling of cubes. We study geometrical structure
generated by of packing of cubes (Dutour Sikiric, Itoh and Poyarkov (2007)).

Such a cube packing is called non-extendible if we cannot insert a cube in the complement
of the packing. In dimension 3, there is a unique non-extendible cube packing with 4 cubes. We
prove that d-dimensional cube packings with more than 2¢ — 3 cubes can be extended to cube
tilings. We also give a lower bound on the number N of cubes of non-extendible cube packings.

Given such a cube packing and z € Z?, we denote by N, the number of cubes inside the
4-cube z + [0,4[? and call second moment the average of N2. We prove that the regular tiling
by cubes has maximal second moment and give a lower bound on the second moment of a cube
packing in terms of its density and dimension.

We consider sequential random packing of cubes z + [0, 1]" with z € %Z" into the cube
[0,2]" and the torus R™/2Z" as N — oo. In the cube case [0,2]" as N — oo the random cube
packings thus obtained are reduced to a single cube with probability 1 — O (%) In the torus
case the situation is different: for n < 2, sequential random cube packing yields cube tilings,
but for n > 3 with strictly positive probability, one obtains non-extensible cube packings.

So, we introduce the notion of combinatorial cube packing, which instead of depending on
N depend on some parameters (Dutour Sikiric and Itoh (2010)). We use use them to derive an
expansion of the packing density in powers of % The explicit computation is done in the cube
case. In the torus case, the situation is more complicate and we restrict ourselves to the case
N — oo of strictly positive probability.
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We discuss a connection between the following two theorems.

Theorem 1. Let P C R? be a convex polyhedron. Then P is infinitesimally rigid.

In other words, assume that every vertex of P moves with a constant velocity so that all edge
lengths don’t change in the first order (assume for simplicity all faces to be triangles). Then the
whole polyhedron is subject to an infinitesimal rigid motion.

Theorem 2. Let Q C R? be a convex polyhedron. Then Q is Minkowski rigid.

In other words, assume that the planes of all of its faces are infinitesimally translated so that
the area of each face remains constant in the first order. Then @ is infinitesimally translated
as a rigid body.

I know of three ways to relate Theorems 1 and 2, and will concentrate on the third one.

1. Theorems 1 and 2 can be proved by the same argument, counting the number of sign
changes around a vertex, or along the boundary of a face, respectively.

2. Infinitesimal rigidity of a polyhedron P can be derived from its Minkowski rigidity, by
associating to an infinitesimal rotation of a face a parallel translation of it by the normal
component of the rotation vector.

3. Infinitesimal rigidity of P is equivalent to Minkowski rigidity of its polar dual, as described
below.

Theorem 2 can be proved as follows. Choose a coordinate origin inside ). For every face
of @, consider its support number h; (distance from the origin to the plane of the face) and
its area Fj. Infinitesimal translations of faces can be described by variations of the support
numbers. Therefore Theorem 2 is equivalent to

dim ker (gij) = 3, (2)

where the kernel is generated by translations of @) as a rigid body. The equation (2) is proved
in the mixed volumes theory.

This approach can be dualized in the context of Theorem 1. Choose a coordinate origin inside
P. For every vertex of P, consider its distance r; from the origin. An infinitesimal isometric
deformation of P results in variations of (r;). Let us see which variations of (r;) can appear
in this way. For this, decompose P into pyramids with apex at the origin and faces of P as
bases. Every variation of (r;) induces infinitesimal deformations of pyramids. This results in an
infinitesimal isometric deformation of P if and only if the sum w; of dihedral angles around the
edge joining i-th vertex to the origin remains constant in the first order. That is, infinitesimal

isometric deformations correspond to elements in the kernel of <g%> Therefore Theorem 1 is
J

dim ker (g:) = 3, (3)
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equivalent to




where the kernel consists of variations that come from moving the origin.
Now, an equivalence between Theorems 1 and 2 is established through a striking identity

c%)i 8FZ %
ar, )=~ g5, (F"): (4)

where P* is the polar dual to P with respect to the origin.
A further interpretation of these arguments is possible. Note that

0 vol
7 — 9vol@)
Oh;
Therefore the matrix (gif) is symmetric and corresponds to the second variation of the volume
J

of @. In the dual setting, we have the discrete Hilbert-Einstein functional

S(P) = Zﬁ‘(QW —w;) + Z&j(ﬂ —0:5),

i ij
where ¢;; and 60;; are the length of, respectively the dihedral angle at, the edge ij of P. The
equation

27r—wi:857(P)

87“1‘
follows from the Schléifli formula.
The duality between the Hilbert-Einstein functional and the volume of the dual is more
apparent in the hyperbolic geometry. The dual object to a convex hyperbolic polyhedron is a
convex polyhedron in the de Sitter space.
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The chromatic number of a normed space
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This work concerns the classical Nelson — Hadwiger problem which consists in finding the
value x(R") equal to the minimum number of colors needed to paint all the points in R” so
that any two points at distance 1 apart receive different colors (see [2]). The quantity x(R"™) is
called the chromatic number of R™.

The history of the Nelson — Hadwiger problem can be found in many books and surveys
(see, e.g., [3], [6])-

An important variant of the problem was proposed for normed spaces R} with norms
induced by arbitrary centrally symmetric convex bodies K. Let x(R%) be the corresponding
chromatic number. In [4], the authors obtained the estimate

X(R%) < en(Inn)b™

with some constant ¢, which does not depend on K. Here we substantially improve this result.

Theorem 1. The inequality holds

Inn+Inlnn+1Ind+1+o0(1))

ny < |
X(RK>§ 111\/5

4",

Further improvements of the bound in Theorem 1 are possible in the case of the [,-space
R™.
P

Theorem 2. The inequality holds

X(RZ) < 2(1+cp+5n)n,

where 9,, — 0 with n — oo, ¢, <1 for p > 2, and c, — 0 with p — oo.

To prove these theorems, we use some techniques similar to those from [5]. In addition, we
prove a theorem concerning the chromatic numbers of arbitrary spaces R’} with segments of
“forbidden distances”. Namely, we define the value yx(R%, A) as the minimum number of colors
which are needed to paint all the points in R’ so that any two points at any distance x € A
apart receive different colors. Let A" = [1,1].

Theorem 3. The following five results hold.

1. One has x(R%, A") < (2(14+1) 4+ o(1))™.

\S)

. Let p > 2. Then x(R}, A") < (2%(1+1) +0o(1))", ¢, < 1,¢, — 0 with p — oo.

o

. Let 1 > 2. Then x(R%, A") > (1/2)".
4. Let 1> 2. Then x(R}, A') > (b-1)", where b= ? and p' = max {p, L}.

p—1

5. Let 1> 2. Then x(RY, A’) > (b-1)", where b~ 0,755 - /2.
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Theorem 3 has an interesting corollary. Indeed, it is known that

(cxm)™™ < max (R, A) < (3-+ o)™ g
with some absolute constants c¢i,c; > 0. The first result is done in [3]; the second one is
an immediate consequence of a bound from [6]. Other results of this kind can be found
in [7]. Anyway, in order to obtain a lower bound like in (1), one should use a set A, =
{\/27, ce \/W}, where p is a certain prime number (see [7]). This is due to the specificity of
the linear-algebraic method in combinatorics (see [3], [8]) — the only method which is known
to provide good lower bounds for the chromatic numbers. However, it follows from assertion 1
of Theorem 3 that

X(R3, 4p) < (2 (vVm+1) +0(1))",
since Ag C [v/2p, v/2mp] and so I = \/m. In other words, Theorem 3 shows, in particular, that

In (x(R3, Ag)) = ©(nlnm).

The work is done under the financial support of the grant 09-01-00294 of the Russian
Foundation for Basic Research, the grant MD-8390.2010.1 of the Russian President, and the
grant NSh-8784.2010.1 of Leading Scientific Schools of Russia.
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On the number of biLipschitz classes of delone sets
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We study properties of biLipschitz equivalence relationship between discrete sets. The
question about bilipscitz equivalence of Delone sets was raised by M.Gromov in paper [1].

Let M be a metric space. Denote by B,(z) a closed ball and by B} (z) an open ball of radius
p with center at point z. A set A C M is a Delone set if for some real r and R such that
0 < r < R the following two conditions hold:

(1) Br(z)(Bp(y) = @ for any z,y € A,

(2) U Br(z) =M,
zeA

Sometimes, Delone sets are called separated nets.

Delone sets A C M; and B C M, in possibly different metric spaces M; and M, are
biLipschitz equivalent, if there exists a bijection F' : A — B and a real number \ > 1 such that
for every z,y € A holds

1
A

If we mind the value of A we call A and B A-bijective. The mapping F for which the last
inequality holds, is called A\-biLipschitz. If two sets are biLipschitz equivalent we say that they
belong to the same biLipschitz class.

We mention some results on biLipschitz equivalence of Delone sets in Euclidean and non-
Euclidean spaces. O. Bogopolsky [2]| proved that any two Delone sets in hyperbolic space H?
are biLipschitz equivalent. P. Papasoglu [3] showed biLipschitz equivalence (as discrete metric
spaces) of two homogeneous trees even with different valences k£ > 3 and n > 3.

In the case of Euclidean space E¢ D. Burago and B. Kleiner (see [4]) and C. McMullen (see
[5]) independently proved the existence of a Delone set which is not equivalent to the integer
lattice Z¢.

We generalize results of paper [4]. The main result obtained is the following

Theorem. For every integer d > 2 the set of biLipschitz classes in E? has cardinality
continuum.

All further arguments refer to the space E.

The upper estimate for cardinality is trivial due to one A. Garber’s lemma (see [6]). To
establish the lower estimate we will construct a continuum family of pairwise non-equivalent
Delone sets. All these sets will belong to some special class.

Consider a rectangular coordinate system in E?. Parallelepipeds (cubes) with edges parallel
to coordinate lines are called coordinate.

Let @ be a coordinate cube. By m(Q) denote its vertex with the least sum of coordinates.

Consider a tiling T' of E¢ into coordinate cubes such that edge length of every cube belongs
to [1, L]. The set A= {m(Q): Q € T} is obviously a Delone set. We will call all sets obtained
by such a construction L-special.

There are two crucial points in our proof.

The first one is lemma being a discrete analog of Burago and Kleiner’s theorem about
Jacobians (see |4, Theorem 1.2]). This lemma allows us for any A to construct local obstacles
in Delone sets for being A-bijective to the integer net Z.

dMl('T7y) < sz(F(x)7F(y>> < )\dMl(x7y)
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The second point is considering a continuum set of pairwise non-confinal (0, 1)-sequences.
Each sequence will encode a Delone set, or, more precisely, an arrangement of constructed
obstacles in it. Using the property of non-confinality we will prove that these sets are pairwise
non-biLipschitz equivalent.
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K Bomnpocy o nepeuncjieHun apxmMe10BbIX
MHOTOT'PAHHUKOB B IIpocTpaHcTBe JlobadeBcKOro

Burananit Makapos
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XopoIio u3BecTHa Ta CBs3b, KOTOPAsi HMEETCsl MeKJLy apXHMeJ0BbIMU (TPeXMepPHBIMHU, KO-
HequIMI/I) MHOT'OI'PaHHUKaMH U COOTBETCTBYIOIIUMU aPXUMEIO0BbIMUA pa36I/IeHI/IHMI/I ,ZLByMepHOI‘/'I
cdepnr (cM., Hanp, [1]). TlogHbli mepederb Beex apXuMeIOBBIX (PABHOYTOJBHO OJIYPABHIb-
HBIX) MHOIOTDAHHUKOB OBLI XOPOIIO U3BECTEH eIle JPEeBHUM TrpekaM. AKKYypaTHOe H3JI0KEHUe
M30TOHAJIBHBIX (M N3039/(pajIbHBIX) pa3buenuii cepbl (apXuMeI0Bbl pa30HeHHs IBISIOTCS JTHIITb
YACTHIO H30IOHAJIBHBIX pa30ueHuii) unrarear MoKeT HaiiTh, Hanpumep, B pabore E.C.Denoposa
[1]. OcHoBBI TeOpUE W309ApATBHBIX pasbuenuit mockocTr JI06a4eBCKOro hakTHIECKH W3JI07Ke-
HbI B UpPOKO m3BectHoM Memyape A.Ilyankape [2]. TloapoGHoe u3noxkenue (¢ TOYKU 3peHUsT
COPTOB) TEOPUH IJIAHUTOHOB BKJIMIOBON ILTOCKOCTH JaHo B paborax B.H./lemone u ero yuenu-
KoB [3| u [4]. B manHOM COOOIIEHUN MPEJIAraeTCs MOIX0/ K MePETHCTIeHUI0 BCEX apXUMEJI0BBIX
(a, ceoBaTesIbHO, W JIyaJdbHBIX K HUM) pa3buennii miockocru JlobadeBckoro.

VCI0BHMCST TIPUIEPIKUBATHCST OBIIENPUHSATOrO ONPEIeIeHNsT apXUMeIoBa (PaBHOYTOJIbHO-
OJIyIPABUJILHOTO) MHOTOIDAHHHUKA KAK (BBIMYKJIONO) MHOTOIDAHHUKA, BCE TPAHU KOTOPOTO -
IPABUIbLHBIE MHOIOYTOJbHUKH, CPEIU TpaHeil KOTOPOro HMEIOTCS Pa3ndHble, a IPYIIIa CHM-
MeTPHU MHOTOIDAHHHUKA JEfiCTBYeT TPaH3UTUBHO HA MHOYKECTBE ero BepinuH. Pasbuenue (HOp-
MaﬂbHoe) ABYMEPHOI'O IIPOCTPAaHCTBA HOCTOSIHHOM KPUBU3HbBI Ha IIPpaBUJIbHbIE MHOTI'OYT'OJIbHUKHA
HA3bIBAEM apXUMeIOBBIM (KOPOTKO: -pa3bieHneM), eciim Cpejii MHOTOYTOJIbHUKOB eCTh Pa3/Ind-
Hble, & IPYIIa CUMMETPHU Pa3OUueHus JefiCTByeT TPAH3UTUBHO HA MHOYKECTBE ero BepinnH (y3-
70B). Pasbuenue (HOpMaJbHOE) HA PABHBIE TPABUILHBIE MHOTOYTOJIBHUKI TOTOBOPUMCS HA3BI-
BATH I[JIATOHOBBIMHU, W00 OHU TMPHUBOJAT K IJIATOHOBBIM (T.€. MPABIJIBHBIM) MHOIOTDAHHUKAM.
AHaI[OFI/I‘{HO onpeaeIdiTCd IJIaTOHOBbI U —pa36I/IeHI/IH 1 apXuMeJ0Bbl MHOI'OI'DaHHUKHU B 60ﬂee
BBICOKHX Pa3MepPHOCTSIX.

B COO6HI€HI/II/I IIOKa3bIBaACTCA, YTO, KaK U B CJIy4dae IIPpaBUJIbHBIX MHOI'OI'PaAaHHUKOB B U I1JIATO-
HOBBIX pa30ueHmuii , B mpocTpaHcTBe J106a1eBCKOro MOABISIOTCA apXUMeI0BBl MHOIOIPAHHHUKH C
GECKOHEYHBIM YHCIOM MPABUIBHBIX KOHEUHBIX I'PaHeil (1 6eCKOHEYHOe YUCI0 UM COOTBETCTBYIO-
mux -pas3ouennii). [TokaspiBaeTcsi, 9T0 Bee T€ IPHEMbI, KOTOPbIE UCIOIB3YIOTCS JIJIs HOJTY 9eHUsT
APXUMEJO0BbIX MHOT'OI'PAHHUKOB B CJIy4dae 3BKJIMI0Ba HPOCTPaHCTBaA , HPUMEHHUMbI U JIJId IIOJIY-
YeHHsI APXUMEJIOBBIX MHOIOTDAHHUKOB B pocTpaHcTBe JI06a4eBCKOro (1 apXumMeoBbix pa3bue-
Huii mwockoctu JIobadeBckoro). Bosee Toro, B mpocTpancTBe JI06a9€BCKOTrO MOSIBISIOTCS HOBBIE
THIIBI APXHMEI0BLIX MHOTOTPAHHUKOB M HOBBIE CUETHBIE CEPUHU aPXUMEIOBBIX MHOIOIDAHHHKOB.
[Ipu 3TOM MOABIAMOIINECT HOBBIE CEPHH BCE JAJbIIE H JAJbIIe KAYeCTBEHHO YXOIIT OT HMe-
IOIIINXCA C(l)epI/I‘{eCKI/IX 1 IBKJ/INJOBBIX aHaAJIOI'OB. STO HaBOAMUT Ha MBICJIb O TOM, 4YTO TaKHUM
crocoboM Bcex cepuit He 1mepedpaTh.

BeIxos, U3 cO3aBIerocs moJoxkeHus mojickasbiBaer Memyap A.llyamkape [2|, mocssien-
HBI (pbaKTHIECKH TeOpHH ILTAHUTOHOB Ha ILTOCKOCTH .JIobadeBckoro. Bo3Hukaer ecrecTBeHHAsI
nies Kiaaccudukanun -pa3oueruii mockoctn JIobatueBCKoro mo pojaaM IOBEpXHOCTeH B CTHIIE
A.llyankape. B coobmennn moka3biBaeTcss KaK 9Ta UIesi MOYKeT ObITh pean30BaHa MPAKTUIe-
cku. VI3 npuBeieHHBIX TIPUMEPOB CTAHOBUTCS SICHO IIPEMMYIIECTBO IIPEJIaraeMoro moaxoa.
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B zakstouenun coobienns OyaeT odpalieHo BHUIMaHUe Ha UCIOIb30BAHIE MOJTYIYeHHBIX pe-
3YJABTATOB JJIs IIOCTPOEHUS HOBBIX PA3HOBHUIHOCTENl MHOTOIDAHHUKOB C MPABUJIHBHBIMU TPAHIMI
B , PABHOIDAHHO-TIOTY TPABIILHBIX MHOTOTDAHHIKOB, HOBBIX MPABUJILHBIX U aPXUMeTOBBIX MHO-
rOrpaHHUKOB ¢ GeckoHedHbIME Tpausamu (cM. 5], [6]).
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Local criterion for crystallographic tilings of Euclidean
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A tiling T of space by polyhedra is called crystallographic (more concretely, m-hedral) if
the number of orbits of tiles w.r.to the symmetry group Sym(T) is finite and equal to m .
For simplicity, we consider just face-to-face (in Russian literature after Delone they are called
normal) tilings. The definition of m-hedral tiling is based on a global concept of the symmetry
group of a tiling. The local theory, started in works by Delone, Galiulin et al and developed
in works by Dolbilin, Shtogrin, was aimed to give a groupless description of a crystallographic
tiling in terms of congruent classes of coronae.

The corona C,(P) about a cell P of radius n is defined in a recurrent way. If n = 0 Cy(P)
is defined as the cell P itself. Let C),_; be already determined then the corona C,(P) is defined
as a polyhedral subcomplex in T consisting of C,_1(P) and all tiles of T sharing a common
hyperface with tiles from this corona. Two coronae Cy(P) and Ci(P) belong to one class if
there is an isometry of space which moves the corona Cy(P) and Cx(P) and the center P into
the center The number of classes of coronae of radius k is denoted by Nj. For a given corona
Cx(P) denote by Gi(P) a group of all symmetries of Cy(P) leaving the center P invariant.
Note that whereas N, is monotonically non-decreasing function of k, the sequence of groups is
monotonically reducing: G; > G5 3

Local Theorem (Delone, Dolbilin, Galiulin, Shtogrin). Given a d-space (Euclidean or
Spherical, or Lobachevski) and natural number m, a tiling T of space is m-hedral if and only
if there is such a positive integer k that (1) Ny_; = Ny = m; (2) Groupes Gy_1(P) = Gi(P)
for any cell P in the T

In particular, the local theorem implies an upper bound K for the radius of coronae such
that if for a tiling Nx = m then the tiling is m-hedral. However, this upper bound is very
rough.

In the talk we will discuss recent results concerning reasonable estimates for the radius K
of coronae such that the condition Nx = m implies a tiling to be m-hedral tiling. The next
theorem is principal:

Theorem (E.M.). Given m-hedral tiling in Euclidean plane, then:

(1) in any cell the number of its edges does not exceed 12m — 6;

(2) The order of the group Ga,,—1 for all cells in 7" does not exceed 12.

Theorem. The m-hedrality criterion. A tiling in Euclidean plane is m-hedral if and only if
Ny = m;
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Consistency on cubic lattices for determinants of arbitrary
orders
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We consider relations on elementary N x N squares, N > 2, of the square lattice Z2, and
propose a new type of consistency conditions on cubic lattices that is connected to bending
elementary N x N squares, N > 2, in the cubic lattice Z3. For an arbitrary N we prove such
consistency on cubic lattices for relations defined by the condition that determinants of values
of the field at the points of the square lattice Z? that are contained in elementary N x N squares
vanish. We also consider some modifications and generalizations of this consistency principle.
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Unfoldings of doubly coverd polyhedra and space-fillers
with minimum surface area!
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A doubly covered square is a degenerated polyhedron consisting of two congruent squares
whose corresponding edges are identified. The geometric properties of convex unfoldings
(developments) of a doubly covered square were studied by J. Akiyama and etc.[1], all such
unfoldings were determined by them, and it was showed that such unfoldings are plane-fillers.
We extend these results from the plane to the 3-space (]2]).

Definition 1. Let P be a polyhedron. The doubly covered P ( denoted by D(P)) is the
degenerated polytope in the 4-space consisting P and its congruent copy (denoted by P*)
whose corresponding faces are identified.
Definition 2. A body W (homeomorphic to a closed unit ball in R?) is called an unfolding
of D(P) for a polyhedron P if there is a continuous map (denoted by fw,pp)) from W onto
D(P) such that

() fw,p(p) is locally isometric on the interior of W, and

(1) fw,p(p) has no 3-dimensional overlaps (that is, for disjoint sets of W the images have
no common interior points).

A parallelohedron is defined as a polyhedron whose parallel copies tile the 3-space R® in
face-to-face manner. It was proved by E. S. Fedrov that the convex parallelohedra can be
classified into five topological types: the cube, the hexagonal prism, the rhombic dodecahedron,
the dodecahedron with eight rhombic and four hexagonal faces (the elongated dodecahedron),
and the truncated octahedron.

Theorem 1. All five types of parallelohedra can be obtained as unfoldings of doubly covered
cuboids (rectangular parallelepipeds).

By studying the geometric properties of convex unfoldings W of D(P) for a cuboid P,
under the assumption that W contains P, we can determine all such unfoldings. We define
a generalized rhombic dodecahedron, a generalized elongated dodecahedron and a generalized
truncated octahedron.

Theorem 2. Convex unfoldings W of doubly covered cuboids D(P) for a cuboid P are
parallelepipeds, k-gonal right prisms (3 < k < 6), generalized rhombic dodecahedra, generalized
elongated dodecahedra and generalized truncated octahedra, under the assumption that W
contains P.

A body W in the 3-space is called a space-filler of congruent copies of W tile the 3-space with
no gaps and no 3-dimensional overlaps.

Theorem 3. Every unfolding of D(P) for a cuboid P is a space-filler.

L This is a joint work with Jin-ichi Itoh
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We can extend those results from cuboids to more general polyhedra called reflective space-
fillers which are classified into seven types by H. M. Coxeter : the three types of tetrahedra,
the three types of triangular right prisms and the cuboid ([2]).

As application of Theorem 2 and Theorem 3, we study the Kelvin’s problem related to
finding convex space-fillers with minimal surface area ([3]).

Theorem 4. Among all convex unfoldings of the doubly covered cuboid with its edge lengths
\/5, V2 and one, the truncated octahedron has the minimum surface area.
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The transition constant for arithmetic hyperbolic reflection
groups
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The transition constant was introduced in our 1981 paper and denoted as N(14). This
constant is fundamental since if the degree of the ground field of an arithmetic hyperbolic
reflection group is greater than N(14), then the field comes from special plane reflection groups.
In recent paper, we gave its upper bound 56. Using similar but more difficult considerations,
here we show that the upper bound is 25.

As applications, we show that the degree of ground fields of arithmetic hyperbolic reflection
groups in dimensions at least 6 has the upper bound 25 (it was 56 before); in dimensions 5, 4,
and 3 it has the upper bound 44 (in our papers, it was 138, and 909 before).

These results and developed methods will be important for further classification of these
groups. See details in arXiv:0910.5217.
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The normal curvatures of hypersurfaces in Hilbert
geometry!
Evgenii Olin
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Consider a bounded open convex domain U C R™ such that its boundary is a C*
hypersurface with positive normal curvatures in R™ with Euclidean norm || - ||. For a point
x € U and tangent vector y € T,U = R" let z_ and z, — be the intersection points of the
rays * + R_y and x + R,y with absolute OU. Then the Hilbert metric is defined as follows:

F(z,y) = 1|yl (ch_lwi” + IIw—1x+||>' Hilbert geometry is the generalization of the hyperbolic

geometry in Klein interpretation (when U = B}'). Hilbert geometries are also Finsler spaces of
constant negative flag curvature —1 .

The normal curvature of hypersurface in Finsler space is defined as follows [1]. Let ¢ : N —
M™ be a hypersurface in Finsler manifold M". A vector n € T, M" is called the normal
vector to N at a point © € N if g,(y,n) = 0 for all y € T, N. The normal curvature k, at a
point x € N in direction y € T, N is defined as ky, = gn(Ve(s)¢(s)|s=0, ), where ¢(0) = y, and
c(s) is a geodesic in induced connection on N, n — chosen unit normal vector.

Hadamard proved that the compact orientable immersed in Euclidean space hypersurface
with positive Gaussian curvature is embedded as the boundary of convex body [3].

C. Currier proved the following generalization of Hadamard theorem for immersions in the
hyperbolic space L".

Theorem ([5]). Let M be a complete connected C™-riemannian n-dimensional manifold,
n > 2. Suppose that f: M — L" is a C*®-isometric immersion of M, and there exists a smooth
normal vector field v along f such that all the eigenvalues of the second form of the manifold
M = f(M) in L™ with respect to v are greater of equal than 1. Let there exists a point p € M
at which all the normal curvatures are strictly greater than 1. Then M is an embedded compact
hypersurface which are diffeomophic to the sphere S™~!.

A.A. Borisenko ([4]) generalized Currier’s theorem for immersions in a Hadamard manifold.
He also obtained the extremal property of hyperbolic space.

We generalize Currier’s theorem for Hilbert geometry.

Consider an immersion ¢ : M — U of C*°-hypersurface M in n-dimensional Hilbert
geometry. Denote by 0, M the ideal boundary of M i.e. the intersection of all limit points
of M with the absolute OU. We call the hypersurface M to be reqular up to the absolute if each
point p € J,, M has a neighborhood B such that the immersion ¢|p : M — U is extendable to
the diffeomorphism @|p : M — U.

Theorem. Consider n-dimensional Hilbert geometry based on the domain U € R?, which
is a bounded open set with the boundary C°°-hypersurface with positive normal curvatures.
Consider C*®-immersion ¢ : M — U of a complete connected regular up to the absolute
hypersurface M in U. Let all the normal curvatures of M satisfies ky, > ko > 1. Then M
is an embedded compact hypersurface which are diffeomophic to the sphere ST~1.

References

[1] Shen Z. Lectures on Finsler Geometry. — Singapore:World Scientific Publishing Co. — 2001 —
306 p.

[2] Rund H. The Differential Geometry of Finsler Spaces, Y Springer-Verlag, 1959.

! This is a joint work with Alexander Borisenko.

64



[3] S. Sternberg. Lectures on Differential Geometry. — Prentice-Hall, Englewood Cliffs, N. J., — 1970.
390 p.

[4] Borisenko A.A. Convex Hypersurfaces in Hadamard Manifolds // Progress in Mathematics. —
2005. — Vol. 234. — P. 27-39.

[5] Currier C. On hypersurfaces of hyperbolic space infinitesimally supported by horospheres //
Trans. of Amer. Math. Society. — 1989. — Vol. 313. — No 1 — P. 420-431.

Singularities of saddle spheres
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Segre’s theorem asserts the following: let a smooth closed simple curve ¢ C S? have a non-
empty intersection with any closed hemisphere. Then ¢ has at least 4 inflection points.

In the talk, we go one dimension higher: we replace S? by S3. Instead of simple curves,
we treat immersed piecewise linear saddle surfaces which are homeomorphic to S* ("saddle
spheres"). We prove that a piecewise linear saddle sphere I' C S® necessarily has inflection or
reflex faces. The latter replace inflection points and should be considered as singular phenomena.

This object is not chosen just by chance: the study of closed saddle surfaces was originally
motivated by A.D. Alexandrov’s problem.

As an application, we prove that a piecewise linear saddle surface cannot be altered in a
neighborhood of its vertex maintaining its saddle property.
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On axiomatic parametrization

Alexandru Popa
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When Euclidean geometry was the only considered one, nobody cares how it relays with
other geometric systems. However, when non-Euclidean geometries were developed, their
axiomatics become important. Construction of new geometry is not trivial in both synthetic
and analytic ways. Felix Klein in [1] proposed Erlangen Program, aimed to classify and
characterize geometries on the basis of projective geometry and group theory. In his work [2],
Isaak Yaglom says that: “finding a general description of all geometric systems |was| considered
by mathematicians the central question of the day”.

Interestingly, two great contributors in construction of hyperbolic geometry, Janos Bolyai
and Nikolai Lobachevsky adopted different ways on achieving their goal. While Bolyai dropped
the V-th postulate of Euclid and developed ‘absolute geometry’, Lobachevsky changed it in a
certain way. Author developed a concept of axiomatic depending on parameters, a single set of
primitives and axioms depending on some parameters that can describe any homogeneous
geometry!, as well as an uniform model for all homogeneous spaces, depending on same
parameters. Author’s project, GeomSpace [4], is based on this uniform model.

The advantages of axiomatic parametrization are, among others:

e Elaboration of common terminology among different geometries.
e (lassification of homogeneous spaces.

e Comparison of geometric properties of different geometries.

e Construction and study of new geometries with given properties.

e Possibility to formulate theorem depending on parameters that are valid for all geometries,
and demonstrate them parametric, once for all geometries.

e Develop of depending on parameters equations, equally valid for all geometries, and
deduce them once for all geometries.

2000 Mathematics Subject Classification: 51N05, 51N15.
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Homogeneous space is a space that looks the same everywhere [7].
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Invariant polyhedra for families of linear operators
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The notion of the joint spectral radius (JSR) of several operators appeared in early 60th in
a short work of J.K.Rota and G.Strang. Now it has found numerous applications in the control
theory, functional analysis, approximation theory, number theory, wavelets, coding theory etc.
The joint spectral radius of a family M = {A;,..., A,,} of linear operators acting in R? is
defined as "

p(M) = k:h—{go d1,...,d£n€a{}i...,m} H Ag, -+ Ag, H .
So, JSR is the exponent of the maximal growth of products of those operators. For example,
if the family M is irreducible (i.e., the operators Ay, ..., A,, do not have a nontrivial common
invariant subspace), then maxg, . 4, HAch - Ag, H = M\ where A = p(M). This, in particular,
implies the crucial property of JSR: p(M) < 1 if and only if there is a norm in R?, in which all
the operators Aq,..., A,, are contractions.

One the main problems in the study of JSR is its computation or estimation for given
operators. This problem is known to be NP-hard. There are no algorithms polynomial with
respect to both the dimension d and the accuracy € of approximation.

We describe a geometrical approach using the notions of extremal norms and invariant
convex bodies of linear operators. A convex body K C R? is invariant for a family M, if

AZKCAK, izl,...,m,

where A\ = p(M). Invariant bodies exist for any irreducible family, and may not be unique. It
appears that in most of practical cases the invariant body is a polyhedron, and can be efficiently
found. This leads to exact computation of JSR.

We analyze the structure of invariant polyhedra and methods for their construction. We also
present several applications to problems of real analysis, combinatorics, and number theory,
where constructing invariant polyhedra gave complete solutions.
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Borsuk and Nelson — Hadwiger problems for spheres!
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This work is dealt with two classical and closely connected problems of combinatorial
geometry. The first problem was proposed in 1933 by K. Borsuk who asked whether any set
of diameter 1 in R? can be divided into d + 1 parts of smaller diameter (see [1]). The second
problem is due to E. Nelson and H. Hadwiger. Initially, it was in finding the value x(R?) equal
to the minimum number of colors which are needed to paint all the points in R? so that any
two points at distance 1 apart receive different colors (see [2]).

The history of Borsuk’s question as well as that of the Nelson — Hadwiger problem is very
interesting and even somehow dramatic. It can be found in many books and surveys (see, e.g.,
131, [4], [51,[6]).-

Important variants of both problems have been proposed for spheres in R%. Let S¢~! C R? be
the sphere of radius r with center at the origin. Denote by f,(d) the minimum number of parts
of smaller diameter, into which an arbitrary set Q C S%°! of diameter 1 can be decomposed.
Also, let x(S971) be the minimum number of colors needed to paint all the points of the sphere
so that any two points at distance 1 apart receive different colors.

Of course, we have r > 1/2. Moreover, X(Sf/_;) = 2, fij2(d) = d + 1. The last result is
essentially equivalent to the classical Borsuk — Ulam theorem in topology.

For r > 1/2, the value x(S%1) was studied, in particular, by L. Lovész in [7]. The exact
assertion of Lovasz is as follows: for any r > % and d € N, the inequality holds x(S31) > d; if

d
T <\ 2ds2

than 1, then x(S¢') < d+1. Although this result is widely cited (see, e.g., [8]), its second part
is completely wrong. Actually, for every r > %, the quantity x(S"~!) grows exponentially, not
linearly. Our results are given below.

~ %, i.e., the length of any side of a regular d-simplex inscribed into S is smaller

Theorem 1. For any r > 3, there exist a constant v = v(r) > 1 and a function p(d) =

o(d,r) = o(1), d = oo, such that for every d € N, the inequality holds

X(S7H) = (v + ()™,

Theorem 2. There exists a constant ¢ > 0 such that for any sequence of radii rq satisfying the
inequality

we have the bound

Theorem 3. There exists a constant ¢ > 0 such that for any sequence of radii rq satisfying the

inequality
1 ¢
< 4=
rg < 5 + 7

! This is a joint work with Andrei Kupavskii, e-mail:kupavskii@yandex.ru
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we have the bound
X(SE) <d+1, Vd>do.

As for Borsuk’s problem, it follows from a paper by J. Kahn and G. Kalai (see [4]) that f,.(d)
grows like c*/&, c > 1, provided r ~ % (Borsuk’s question has a negative answer). However, for

other values of r, no one knew how to produce estimates. We succeded in finding non-trivial
bounds for f,(d) with any r > 1/2.

Theorem 4. For any r > %, there exist numbers k = k(r) € N, ¢ = ¢(r) > 1 and a function
0 =46(d) = o(1) such that
k
fo(d) = (c+ ) Ve,

Theorem 5. Let r = r(d) = § + ¢(d), where ¢ = o(1) and (d) > "¢ for all d and a large

enough ¢ > 0. Then, there exists a dy such that for d > dy, fra)(d) > d+ 1.
At the same time, we get

Theorem 6. Let r = r(d) = § + ¢(d), where p = O(1/d). Then, f,(d) < d~+1.

The work is done under the financial support of the grant 09-01-00294 of the Russian
Foundation for Basic Research and the grant MD-8390.2010.1 of the Russian President.
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Delone Sets and the Homometry Problem
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Two Delone sets A and B in E™ are said to be homometric if A— A = B— B. 75 years after
the phenomenon was first noted (in crystallography) many questions remain open. Which sets
A have homometric partners, and how many? How can we find them? What is the geometry of
homometric pairs? [ will explain what is known and what is not known about the homometry
problem, beginning with Delone’s brilliant reconstruction of mathematical crystallography from
(r,R) systems in the 1930s and concluding with conundrums in quasicrystals.
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This is a joined work with M. Prasolov [6].

Tiling problems are popular because they are very visual but often hard to solve [3,4,5].
They have applications in architecture and design. The interest to these problems always
grows because of discovery of their relationship with discrete harmonic and complex analysis,
probability theory, physics of networks [1,5].

We solve the following problem in certain particular cases: which polygons can be tiled by
rectangles of given shapes? A classical case of rectangles tilable by squares was considered by
M. Dehn in 1903. The general problem for "signed” tilings was solved by K. Keating and J. King
[4].

Tilings by rectangles have a celebrated physical interpretation with direct-current circuits,
found by R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte. Our new approach is based
on application of inverse problems for direct- and alternating-current circuits.

Our first result is a necessary condition for a rectangle to be tilable by rectangles of given
ratios. By the ratio of a rectangle we mean the horizontal side divided by the vertical one.

Theorem 1. Suppose that a rectangle of ratio c can be tiled by rectangles of ratios cy, ...,
¢n. Then ¢ = C(cy, ..., c,) for some rational function C(zy, ..., z,) such that
e C(z,...,2,) has rational coefficients, i.e., C(z1,...,2,) € Q(21,...,2n);

e C(z1,...,2,) is degree 1 homogeneous, i.e., C(tzy,...,tz,) =tC(z1,...,2n);

e if Rezy,...,Rez, >0 then ReC(zy,...,2,) > 0.

Case n = 1 (respectively, n = 2) of both Theorem 1 and its converse was proved by M. Dehn
(respectively, by C. Freiling, M. Laczkovich and D. Rinne). We dot know whether the converse
theorem is true for n > 3.

Our second result is a criterion for a rectangle to be tilable by rectangles similar to it but
not all homothetic to it.

Theorem 2 For a number ¢ > 0 the following 3 conditions are equivalent:

e a rectangle of ratio ¢ can be tiled by rectangles of ratios ¢ and 1/c¢ (in such a way that
there is at least one rectangle of ratio 1/c in the tiling);

2 2

e the number ¢
real numbers.

is algebraic and all its algebraic conjugates distinct from ¢® are negative

e for certain positive rational numbers dy, ..., d,, we have
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This result is analogous to a description of rectangles whose similar copies tile a square,
obtained by C. Freiling, M. Laczkovich, D. Rinne and G. Szekeres [3]. A short physical proof
of the latter result is also obtained. The proof uses alternating-current circuits and reduces the
result to a simple inverse problem for them solved by R. Foster and W. Cauer in 1920s.

Our third result is a criterion for a (not necessarily convex) polygon to be tilable by squares.
Such a criterion for a rectangle is given by the M. Dehn theorem, and for an L-shaped hexagon
was obtained by R. Kenyon [3]. We reduce the general problem to an inverse problem for dirrect-
current electrical circuits solved recently by Y. Colin de Verdiere, E. Curtis and J. Morrow [2].
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Quasiperiodic tilings and cubic irrationalities'.
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Let 8 > 1 be a cubic Pisot unit. Then for any positive real x we can obtain the greedy

expansion
o

T = Z a_iB™" (5)
i=No
with a; € Z and
N
o= apT| < (6)

1=Np

Let ® be a map from Q(3) to R? defined by ®(z) = (Rez™®, Imx(M) if algebraic conjugates
to 3 are complex, and ®(x) = (z™,2®) if algebraic conjugates to 3 are real. Here *@ are
conjugations in the field Q(/3). Now suppose that w runs all possible finite fractional parts with
(6) and S, is the set of the sums (5) whose fractional parts coincides with w. Akiyama [1| proved
that if the expansion (5) is finite for any x € Z[37!] then we have a self-affine quasiperiodic
plane tiling T'l(3)

R* =[] 2(S.)- (7)

He also establish some interesting results about the connection of the algebraic properties of 3
and geometric properties of T%l(/3). Earlier Rauzy studied special case of this tiling in the case
B2 —p-1=0[2.

In [3] we prove some new geometric properties of the tiling 7(3).

Consider a similarity transformation which maps the tile with the point of origin to some
fixed tile T from Til(S). The image of the point of origin under this transformation is called
a Rauzy point of the tile T. Denote by R(/3) the set of all Rauzy points from the tiling. Note
that the tiling T'il(3) consists of only finite types of tiles. Let R¥(3) be the set of all Rauzy
points of the tiles of type 7.

Theorem 1. The set ®~1(RW(B)) is an intersection of the ring Z[3~] with some right-open
interval. Moreover, ®~1(R™(3)) C [0;1).

Two tiles from T'il(() are neighbouring if they have a common part of boundary. Let = be
a Rauzy point of some tile T". The local star S(z) is a set of vectors traced from this Rauzy
point x to Rauzy points of tiles neighboring T'. Each vector has weight, the number equal to
the type of the neighboring tile.

Theorem 2. The tiling Til(B) has only finite type of local stars. Moreover, if RO (B) is the

set of all Rauzy points with local star of type i then <I)_1(E(i)(ﬁ)) is an intersection of the ring
Z[B7Y] with some right-open interval.

Now let C,(X) be the n-crown of some set of tiles X. Let Npy(g)(n) be a number of
equivalence classes of n-crown of the tiles from T%l(3). The function Npygy(n) is called a
complexity function of the tiling.

L This work was partially supported by RFBR, grants N’ 08-01-00326, 08-02-00576.
This is a joint work with A.V.Maleev and V.G.Zhuravlev
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Theorem 3. In any tiling Til(5) there exists the set Nucl(() such that the complexity function
Nrigy(n) is equal to the number of the tiles in n-crown C,(Nucl(B)). Moreover, different tiles
from Cy,(Nucl(f3)) have different n-crowns.

Now let Ty be a tile from T'il(S) consisting the point of origin. Then we have the folowing
conjecture.

Conjecture 1. For any tiling Til(/3) there exists a convex centrosymmetric polygon pol(3) such
that
Cn(Ty) \ Ch_1(T¢
G\ G (T

n—oo n

= pol(f3).
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We give a survey of recent progress in theory of surfaces in three-dimensional Lie groups
and, in particular, expose results obtained via the spinor representation of surfaces.
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The strong thirteen spheres problem!
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The Tammes problem

If n unit spheres kiss the unit sphere in R?, then the set of kissing points is an arrangement
on the central sphere such that the (Euclidean) distance between any two points is at least 1.
So the kissing number problem can be stated in other way: How many points can be placed on
the surface of S¥~! so that the angular separation between any two points is at least 60°?

Denote by dy the largest angular separation that can be attained in a spherical code on
S? containing N points. In other words, how are N congruent, not overlapping circles on the
sphere to distribute when their common radius of the circles has to be as large as possible?
This question, also known as problem of the “enimated dictators”, was first asked by the Dutch
biologist Tammes (1930) who was led to this problem by examining the distribution of the
openings on the pollen grains of different flowers.

The Tammes problem presently solved only for some small values of N: for N = 3,4,6,12
by L. Fejes T6th; for N = 5,7,8,9 by Schiitte and van der Waerden; for N = 10, 11 by Danzer;
and for N = 24 by Robinson.

The Tammes problem for N = 13

The first unsolved case of the Tammes problem is N = 13 which is particularly interesting
because of its relation to the kissing problem and the Kepler conjecture.

It’s clear that the equality £(13) = 12 implies dy3 < 60°. Béroczky and Szabo proved that
di3 < 58.7°. Recently Bachoc and Vallentin have shown that d;3 < 58.5°.

We note that one can construct an arrangement of 13 points on S? such that the distance
between any two points of the arrangement is at least 57.1367°. This arrangement is shown in
Fig. 1. In the paper we show that this arrangement is the best possible and so d;3 ~ 57.1367°

11 10
6
3 2
7 X 9
4 5
8
12 13

Puc. 1: Graph with best known d;3.

Irreducible graphs
Cosider some arrangement M of n points on the shpere. Mark all minimal distances between
points. Denote this graph by F(M).

Definition 6. Irreducible graph The graph F(N) is irreducible if altering of each point of M
does not improve minimal distance.
Irreducible graph has some properties (citation ?7):

L This is a joint work with Oleg R. Musin.

76



1. Index of any vertex can be 0, 3,4, 5.

[\]

. All angles of adjacent edges are less than .
3. For n < 17, there are no possible septagons and higher.
4. For n < 17 free point can be inside ony hexagon, and only one point per hexagon.

5. Danzers trick. Consider some face f and its vertex v;. Let v be a point inside f and
symmetrical to v; above line v;_1v;,; passing through adjacent vertices. So for some j
distance vjv; should be less than minimal. Danzer proved that distance from v to other
vertices is grater than minimal distance. So if also each vjv; < d;3 we can alter v; to v;.

Danzer’s trick does not improve miniaml distance, but eliminates at least one edge of
graph or splits face into smaller.

(is it correct place 77 Danzer trick also doesnot improve minimal distance bbut decreases
number of minimal distances of graph)

Scheme of the algorythm

We assume that best graph is known aggangement (fig. 1). We consider all planar graph
satisfying properties of irreducible graphs: three-connected planar, index of each vertex is not
more than 5, number of sides of each face is not more than 6.

We consider each such graph as possible irreducible with maximal minimal distance and
trying to disproof that it is possible.

For checking feasability of a given graph we consider each angle of any graph face as
independent variable. We write known constrains for these variables and later prove that this
set of non-linear constrains does not have any solution. In the case of success we consider graph
as unfeasable and eliminate it.

3 ‘ 1 2
iy Iy i

Puc. 2: Irreducible graphs infinitisimally close to Gpes:: With pentagon, with empty hexagon,
with hexagon containing free point

After using program only three extra graphs are left (fig. 2). It is best possible variant for
computer program, because for this graphs maximal minimal distance can be arbitrary close
to assuming value of dy3 — 57.1367".
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Self-affine polyhedra and p-radius of linear operators

Andrey Voynov

Moscow State University, Moscow.
an.voynov@gmail.com

Body X C R? (convex compact with non-empty interior) is called self-affine with finite
collection of nondegenerate affine operators of partitioning A;,..., Ay if X = Ule A X and if
@ # j, then sets A4; X, A; X has no common inside points. Bodies A; X are elements of partition.
Bodies A;A;X,j =1,...,k impose self-affine partition of body A, X,i =1,..., k, thus we can
iterate given partition. Body X is called segmenting by collection of affine operators of partition
Ay, Agy i (e) = p(UA;, - A, X diam (A4, ... A;, X) >¢€) — 0 by n — oo for each e.

Theorem 1. Any segmenting self-affine body is a polyhedron.

Thus, study of segmenting bodies reduces to study of polyhedrons. It makes sense to
generalize the definition of segmenting polyhedra in the event of not self-affine polyhedra. Lat
we have a body X and collection of affine operators (possibly degenerate) Ay, ... Ay, such that
A, X C X,i=1,...k. Body X is called compressible if for each £ > 0 there is a composition of
source operators AE, such that diam(A.X) < ¢, or ||A.|| < e.

Theorem 2. Polyhedron is not compressible if and only if there is a set G of nonintersecting
faces, such that under action of each operator A;, A;G C G, in addition each face from G
contains image of some face from G and |G| > 2.

As a corollary we deduce a simple criterion to check, is a polyhedron segmenting.

The results about self-affine segmentic polyhedra can be applied in the theory of self-affine
fractals. In [1] by finite partition of segment were built fractal curves in R It’s possible to
generalize ideas from this work to fractal surfaces and beneficate their combinatorics by self-
affine segmentic polyhedrons. It should be noted, that it’s not a constructive algorithm to find
a fractal surface.

Let K C R be fixed self-affine segmentic polyhedron with operators of partition Ay, ..., Ay.
Suppose we are given a family of affine operators B = {Bl, .. Bk} acting in R?. Let B =
{Bj, ..., By} be the family of the associated linear operators in Rd

A fractal surface of a family of affine operators B is a summable function v € L,(K): K —
R? satisfying the equation:

v(t) = Bpu(AN (1), t € AnK, m=1,.. .k (8)

For a given n € N and for any sequence o € {1,...,k}" we write II, for the product
By1) - - - Bo(ny- Also for any p € [1,00) denote by F,,(p) = Fo(p, B) the value [k~ > _ ||TL,||P]V/>.
For given p € [1, +o0] the p-radius of linear operators of the family B is the value p, = p,(B) =
lim,, o0 [Fn(p, B)]/™.

Theorem 3. For an irreducible family of affine operators Eq. (8) possesses a summable solution
v(t) if and only if pr(krB) < 1. This solution is unique. If for some p € [1,+00] one has
pp((kr)YPB) < 1, then v € L,. For p < 0o the converse is also true: if v € Ly, then p, < 1. If
vV € Lo, then po < 1.
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Results about compressible polyhedra are applied in the matrix theory. Suppose there is a
collection of stochastic nonnegative matrixes Aj,..., A, acting in R%. Was found a simple
criterion, that practically each product A; ...A; ... converges. Herewith image of space
converges to a line and composition converges to a matrix rank 1. In terms of Markov’s chains
it means converge of any Markov’s process with probability 1.

Theorem 4. For family of stochastic matrizes Ay, ..., Ay we have p,(Ay,..., Ax) < 1 for all
p = 1 if and only if for each two indexes t1,ty < d there is product 11 of given matrizes such
that for some t we have (II);; > 0 and (IT)y; > 0.

In literature (see |2, 3, 4] and references therein) conditions, that for each sequence {7;} and
collection of stochastic matrixes Ay, ..., Ay, limit lim, o ||Ai; |span{x} - - - Ai, |span{x} || = 0,
were detailed studied. Such matrixes associate with convergence of subdivision-algorithms. In [2]
it’s shown that this check is not solvable algorithmic in a polynomial time. We weaken condition
in suggest that this limit converges with probability 1 and represent polynomial algorithm to
check.

In 2] was found the algorithm to check, is there fractal curve for family of stochastic
matrixes. We represent algorithm, built with theorem 4, considerably simplifying check,
moreover making generalization in case of fractal surfaces.
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On the study of dihedral folding tilings of the sphere

Elizaveta Zamorzaeva

State University of Moldova, Moldova.
zamorzaeva@yahoo.com

A tiling of the sphere with disks is called dihedral if any disk of the tiling is congruent to
one of two fixed disks. A dihedral edge-to-edge tiling of the sphere with geodesic polygons is
called folding if all vertices are of even valency and the sums of alternating angles around each
vertex are equal to .

Portuguese mathematicians d’Azevedo Breda and Santos have found dihedral folding tilings
of the sphere with spherical triangles and spherical parallelograms. In [1] these authors
classified the symmetry groups of the obtained dihedral folding tilings of the sphere, as well
as determined, for each case, the number of transitivity classes of polygons (isohedrality) and
vertices (isogonality).

The idea of B. N. Delone to classify tilings using so-called Delone classes gave rise to some
fruitful methods for obtaining tilings.

In works [2, 3] the author of this thesis classified 2-isohedral tilings of the sphere using
Delone classes. It prompts another approach to researching dihedral folding tilings. First select
2-isohedral tilings with all vertices of even valency. It was found that tilings having this property
are with two classes of triangles, with triangles and quadrangles, with triangles and pentagons,
with triangles and hexagons. Then, examining the metric of tiling, check the sum of alternating
angles around each vertex.
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Translated directions on the surface of the conformal space

Tatyana Zvereva

Chuvash State Pedagogical University, Cheboksary.
tz-840mail.ru

Consider a multi-dimensional surface V,, C C,, , referred to semi-isotropic semi-orthogonal
frame R = {A\}, A, = I,n+ 1. In this frame the equations: w§ = 0,w) = A/ wk w? =
A%wé, Aﬁﬂ =0 (4,7 =1,m,a,B =m+ 1,n) are true. We are given the normal framing [1] of
surface V;,, determined by the field of quasitensor z:dzy + 29w — 2%/ + w? = zf,w. In this
case, the normal connection V* is induced on the surface V,, C C,,.

Presetting the multi-dimensional surface V), in the conformal space C,, induces a regular
m-dimensional quadratic hyperband H,, in projective space P, ;. Consider a regular quadratic
hyperband H,, CP, 1, that is mutual and dual way normalized by fields of normals of the first
N, —m+1 and second N,,,_; kinds.

The condition of parallelism of a smooth field of the directions [A¢M], belonging to the field
N, —mi1 of normals of the first kind of the hyperbanfcl H,, CP, in normal connection V*, by
a displacement along any curve due to the surface V,, C Q% CP,.1, has the form:

dz* + 2° (2w — 0%) + 2" (ad, 1wl — any 20ws — g¥aw?) = 290, dz" ! = 2" e.
Based on these conditions is proved:
Theorem 1. In any normal framing of the surface V,_o C C, , the field of 2-dimensional
characteristics [AgA,_1A,] of the hyperband H, o CP,1 translates in the normal connection
AV

The characteristic [AgA,_1A,] of the hyperband H,, s CP,; by Darboux mapping is an
image of 2-parametric bundle of hyperspheres Q = n*A, + n°Ay, tangential to each other at
the point Ag € V,,_5. Theorem 1 can be formulated in terms of conformal space C,,:

Theorem 2. In any normal framing of the surface V,,_o C C,, field of 2-parameter bundle of
tangential hyperspheres Q = n®Aqy + 1Ay (o =n — 1,n) of submanifold V,,_o translates in the
normal connection V*.

Let the field of lines [AgM] coincides with the field of invariant straight lines h = [AgN,,41].
Then valid:

Theorem 3. The field of invariant straight lines h = [AgN, 1] on the hyperband H,, CP,.1,
determined by a quasitensor field 2?0, is parallel in the normal connection V* if and only if the
tensor Ap ;. s equal to zero.

A line [AgN,,41] in P, 1 by Darboux mapping is an image of the bundle of the orthogonal
hyperspheres P = £""1N, .1 + £°Ay. Theorem 3 can be formulated in terms of the conformal
space C),:

Theorem 4. Field of invariant bundle of hyperspheres P = "IN, 1 +£° Ay tangential to each
other at the points Ay € V,,,, determined by the field of quasitensor 9, is parallel in the normal
connection V* if and only if the tensor A%, is equal to zero.
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Section “Topology”

Geometric approach to stable homotopy groups of spheres:
abelian and quaternionic structure for mappings with
singularities.

Petr Akhmet’ev
IZMIRAN, Russia.

pmakhmet@mi.ras.ru

Denote by RP"~? the standard n — d-dimensional projective space, assuming that n —d = 1
(mod 2), denote by S"2*/i the standard n — 2k—dimensional lens space (mod 4), assuming
n—2k = 3 (mod 4). Consider generic PL-mapping d : RP"~? — R" and denote by (N"~2¢, ON)
the polyhedron with boundary of self-intersection points of the mapping d. The this polyhedron
N7™=2d\ 9N is defined by the formula:

Cl{((x,y)] € B x B/ ~ | z#y.d(x)=d(y)}.

The boundary ON of this polyhedron N"~2¢ consists of critical points of the mapping d such
that the following natural inclusion N C RP"~¢ is well-defined.

Analogically, consider generic PL-mapping ¢ : S" 2 /i — R™ and denote by (L"~* 0L) the
polyhedron with boundary of self-intersection points of the mapping c. Its boundary 0L consists
of critical points of the mapping ¢ such that the following natural inclusion L C S"~?*/i is
well-defined. Denote by L"~** the canonical 2-sheeted covering over the polyhedron L"~** (with
ramification over the boundary ON). This covering is defined by the formula:

Clf(a,y) € " /ix S %)i | a#y,cla) = cly)}.

The following natural inclusion 9L C L™ ** and the following natural mapping L" % C
S"—2F /i (this mapping is an inclusion in the case 6k > n) are well-defined.

Theorem 1. There exists a mapping d : RP"? — R” such that there exists a mapping
k: N2 — K(Z/2,1) with the following boundary condition: the restriction k|sy : ON —
K(Z/2,1) coincides with the composition ON C RP" ¢ C K(Z/2,1).

Theorem 2. Assuming n =4k+(2°—1),n=2—-1,0>7,0 = V_Tl]’ there exists a mapping

c: S" 2 /i — R" such that the polyhedron L"~** consists of two components L”’4k and L?{;%'

n—4k n—4k
Ly LHb

The polyhedron is a closed manifold with no boundary. The polyhedron contains

boundary 0L C L b4k . Moreover, the following conditions are satisfied:

—1. There exists a mapping (q : L’g‘lk — K(Q, 1), where Q is the group of the order 8 of the
unite quaternions, I, C Q is the subgroup of the order 4 of complex integers, such that the 2-
sheeted covering [754]“ — Lg"““, which is induced by the 2-sheeted covering K (I,,1) — K(Q, 1)
over the target space, coincides with the canonical 2-sheeted covering over Lg"““ .

—2. There exists a mapping (g, : L’“‘H’b‘”C — K(Hy, 1), where Hy is the group of the order
8, isomorphic to the direct product of the cyclic group I, of the orders 4 and the elementary
group Z/2 of the order 2. The subgroup H; contains the subgroup I, C Hy. The 2-sheeted
covering f/ﬁ_fk — L”H_bM€ with the ramification over 0L, induced by the 2-sheeted covering
K(I,,1) - K(H,, 1) over the target space coincides with the canonical 2-sheeted covering with
the ramification over L%’b‘lk )
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The mapping x constructed in the Theorem 1 is called a relative abelian structure for
the mapping d. The pair of mappings ({q,(m,) constructed in Theorem 2 is called a relative
quaternionic structure of the mapping c. The theorems are required, in particular, to obtain

a new proof the well-known Adams Theorem on Hopf Invariants, see the paper by the author
arXiv:1005.1005.

On the KO-theory of toric spaces.

Anthony Bahri

Rider University, USA.
bahri@rider.edu

Central in toric geometry and topology are several important spaces which include moment-
angle complexes, the Davis-Januszkiewicz space and toric manifolds. In any complex-oriented
cohomology theory, the cohomology rings of many of these spaces have elegant descriptions in
terms of the underlying combinatorics. For KO-theory however the situation is more complex.
Even so, a surprising amount of the structure does survive from the complex-oriented case. A
report of recent joint work with:Luis Astey, Martin Bendersky, Fred Cohen, Don Davis, Sam
Gitler, Mark Mahowald, Nigel Ray and Reg Wood.

83



On new family of explicit Riemannian SU(4)-holonomy

metrics!.

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Russia.
bazaikin@math.nsc.ru

The Calabi metrics founded explicitly in [1] were the first examples of complete Riemannian
metrics with SU(2n)- and Sp(n)-holonomy. These metrics are defined on spaces of C-bundles
over the Kéhler-Einstein manifold F'. We constructs in explicit algebraic form one-parameter
family of complete special Kéahler metrics, “joinning” these two Calabi metrics in dimension
eight for one special choice of F'.

Theorem [2|. For 0 < a < 1 every Riemannian metrics of the family

— 47"70[ T (03 870[ ’l"47
9o = Wd >+ mm + 723 +n3)

+(r? 4+ o®)(n; +m2) + (r* — &) (g + 1),

is complete smooth metric with SU(4)-holonomy on the space of canonical complex line bundle
over the manifold of complexr 3-flags in C>. Metric go is isometric to the Calabi metric [1]
with SU(4)-holonomy; metric g, is isometric to the Calabi metric [1] on T*CP? with Sp(2)-
holonomy.

In the above formulas r is radial coordinate in the fibres of bundle, one-form 7, is dual to
angle coordinate on the fibre and one-forms 7, ..., n; generates leftinvariant co-frame on F.
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Toric Degenerations and Exact Bohr-Sommerfeld
Correspondence

Daniel M. Burns
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We consider compact, kdhler Hamiltonian toric manifolds, where the underlying integrable
systems are smooth, but the associated torus action is singular. Interesting examples are
provided by the (classical) Gelfand-Cetlin systems. On such a manifold, there are two natural
quantizations possible, one by holomorphic quantization considering sections of a quantizing
line bundle, and the other is by the real polarization given by the simultaneous levels of the
Hamiltonians at integer values, so-called Bohr-Sommerfeld quantization. The Bohr-Sommerfeld
correspondence should show an isomorphism to as high a degree as possible between these two
quantizations. The exact Bohr-Sommerfeld correspondence should be a linear map between the
two Hilbert spaces giving such an isomorphism. This question was considered a few years ago
by Andrey Tjurin.

The Bohr-Sommerfeld condition yields distributional sections to the quantizing line bundle
supported on the Bohr-Sommerfeld levels. The natural guess for the implementation for the
Bohr-Sommerfeld correspondence would be the Bergman projector from distributional sections
to holomorphic suggestions. For toric varieties with smooth Hamiltonians, this is true and
easy to see, by character decompositions. For systems like the Gelfand-Cetlin systems this
is impossible because the singular torus action is not holomorphic and does not give a
representation on the holomorphic sections of the quantizing line bundle. We describe a method
to show this which uses degeneration to singular toric varieties, singular algebraic varieties
with holomorphic torus action, and a continuity under deformation of integrals of holomorphic
sections taken along Bohr-Sommerfeld levels. In passing we discuss geometric quantization for
the real polarization given by the torus action, and the relation to classical Delzant theory
generalized to singular integrable systems like Gelfand-Cetlin. Relations with classical geodesic
flows on rank one symmetric spaces are also discussed.

Parts of this work are joint projects with V. Guillemin and A. Uribe-Ahumada.
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Causality in space-times, Low conjecture and the partial
order on Legendrian spheres!

Vladimir Chernov

Dartmouth College, USA.
Vladimir.Chernov@dartmouth.edu

Let (X™%1 ¢) be a space-time, i.e. a time oriented Lorentz manifold. For z,y € X we say
that y is in the causal future of x if there is a future directed nonspacelike curve from x to y.
This is denoted by x < y. If the space-time is causal, then the relation < gives a partial order
on it, and we say that x,y are causally related if v <y or y < .

A space-time X is globally hyperbolic if it is causal and the intersection of causal past and
causal future of any two points in X is compact. The classical theorem of Geroch combined
with the recent results of Bernal and Sanchez show that a globally hyperbolic (X™*! g) is
diffeomorphic to M x R, where each M x t is the so called spacelike Cauchy surface of X.
The space N of non-parametrized future directed light rays (null geodesics) in X can be
identified with the spherical cotangent bundle ST*M. All the light rays through x € X form
the Legendrian sphere in N that is called the sky S, of x.

We consider the space £ of all Legendrian spheres in ST*M that are isotopic to a fiber
of ST*M and given two such spheres Si,S; we say that S; < Sy if there is a non-negative
Legendrian isotopy of Sy to S;. We show that if the universal cover of M is not compact, then
S1 < 5, is indeed a partial order on £ and the inclusion X — £, x — S, preserves the partial
order.

This implies that two events z,y in such (X™"! g) are causally related if and only if the
Legendrian link (S5,,5,) is nontrivial. In the cases where M is an open 2-manifold this gives
the proof of the Low conjecture, and when M = R? this gives the proof of the Legendrian Low
conjecture formulated by Natario and Tod.

Very often the fact that (S,,5,) is (topologically) nontrivial can be detected by the
generalized linking numbers constructed in our works with Yuli Rudyak.

Legendrian linking is not equivalent to causality when the space-time has a refocussing
Lorentz metric. The existence of such a metric seems to be closely related to the ¥;* Riemann
manifold, i.e. manifolds for which there is a point z and a number [ > 0, such that all the unit
speed geodesics starting from z return back to x at time [. If time permits, we will discuss some
recent progress relating causality, refocusing and generalizations of Y;”-manifolds obtained in
the works of Kinlaw, Low, Nemirovski, Rudyak, Sadykov and myself in more detail.
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Real Bott manifolds and acyclic digraphs.
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A real Bott manifold is a closed smooth manifold obtained as the total space of an iterated
RP!-bundles starting with a point, where each RP!-bundle is the projectivization of the
Whitney sum of two real line bundles. The diffeomorphism types of real Bott manifolds can
be completely characterized real Bott manifolds in terms of three simple matrix operations on
square binary matrices symmetrically permutable to strict upper triangular form.

This characterization can be visualized combinatorially in terms of graph operations
on directed acyclic graphs. Using this combinatorial interpretation, we prove that the
decomposition of a real Bott manifold into a product of indecomposable real Bott manifolds is
unique up to permutations of the indecomposable factors.

This talk is based on a part of joint work with Professors M. Masuda and S.-i. Oum.
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Enumerative problems for logarithmic forms on hyperplane
complements.

Graham Denham
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The study of logarithmic vector fields and logarithmic forms on unions of hyperplanes in
projective space has a 30-year history that has revealed some interesting subtleties. For example,
a well-known formula of Solomon and Terao expresses the characteristic polynomial of the
arrangement (matroid) in terms of a specialization of the Hilbert series of modules of logarithmic
differentials: however, the Hilbert series of such a module is not uniquely determined by the
matroid. Along the same lines, a result of Mustata and Schenck gives the Chern classes of the
sheaf of logarithmic 1-forms in terms of the same characteristic polynomial, in the interesting
special case where this sheaf is locally free.

I will describe some work that gives new relations amongst the Chern classes of sheaves of
logarithmic forms. We see that, in general, they are not uniquely determined by the matroid;
however, in some cases one does obtain explicit formulas and a “geometric” explanation of
Solomon and Terao’s formula in terms of some elementary intersection theory. This is joint
work with Mathias Schulze.

Loop spaces for manifolds with group actions'.

Natalia Dobrinskaya,

VU University Amsterdam, Netherlands.
NE.Dobrinskaya@few.vu.nl

We construct combinatorial models for loops on manifolds with group actions in terms of
piecewise geodesics. In particular case of toric manifolds, these models can be simplified and in
certain special cases lead to loop space homology computations.

! This is a joint work with Nigel Ray.
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Buchstaber Invariant of Simple Polytopes
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Convex polytopes lie in the focus of a scientific study since antiquity. Let us remind the
Platonic solids, the Euler-Descartes formula, the Cauchy’s and Alexandrov’s theorems about
unfoldings, the Minkowski’s theorem, the Brunn-Minkowski inequality, the g-theorem, and so
on. Toric topology gives a new point of view on simple polytopes.

Let P" = {z € R": A,x+ b, > 0} be a simple n-polytope and § = {F1,..., F,,} the set
of its facets. Then there is a canonical combinatorial construction of a moment-angle manifold
Zp |BPeng| with a canonical action of a torus 7™ such that P™ is an orbit space. Namely, for
each facet F; € § denote by 7% the one-dimensional coordinate subgroup of 78 = T™. Then
assign to every face G the coordinate subtorus 7T¢ = HFDG T* C TS. For every point ¢ € P
let G(q) be a unique face containing ¢ in the relative interior. Then

Zp = (TS x P")/~,

where (t1,p) ~ (t2,q) if and only if p = ¢ and t,t;' € T9P®). We have Zp/T™ = P, and the
stabilizer of a point [(¢,q)] is T¢@. It turns out that the geometric realization of P gives the
realization of Zp as a smooth submanifold in C™ with a trivial normal bundle ([1], see also
[BPrus]).

Sometimes there is an (m — n)-dimensional subtorus in 7™ that acts freely. In this case the
orbit space is a smooth 2n-manifold M?" with a standard action of an n-dimensional torus.
Such manifolds are called quasitoric. But this is not the general case: there are polytopes that
have no quasitoric manifolds at all.

Definition 1. A Buchstaber number s(P) is the maximal dimension of a torus subgroup H =
T*, which acts freely.

It follows from the definition that s(P) is a combinatorial invariant of simple polytopes. In
some sense, s(P) is a measure of a symmetry of a moment-angle manifold. In fact, it can be
defined for any simplicial complex in such a way that s(P) = s(0P").

The problem stated by Victor M. Buchstaber in 2002 is to find a simple combinatorial
description of the s-number.

At present moment the following problems in this field are actual: to find a simple (or
several equivalent simple) combinatorial description that gives an EFFECTIVE method to
calculate the s-number in important SPECIAL cases; to find a connection between values of
s(K) of different simple polytopes and complexes; to find a connection with other combinatorial
invariants.

We study the properties of s(P). It is not difficult to see, that 1 < s(P) < m —n.

Theorem 5. The s-number satisfies the following properties.
1. s(P)=1 if and only if P is a simplez;
2. For any k > 2 there exists a simple polytope with m —n =k and s(P) = 2;

3. s(P) = m —~+ s(Al7]), where v is a chromatic number of P, and A)”} is an (n — 1)-
skeleton of a (v — 1)-dimensional simple;
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4. If P is obtained from Q by an i-flip with 2 <i < n —1, then |s(P) — s(Q)| < 1;

5. s(P) = [™5%] for a flag polytope;

6. There are two polytopes with equal f-vectors and chromatic numbers, but different s-
numbers;

7. It is known (see |Gb|) that each simple polytope P™ with m = n+3 facets can be represented
in terms of a reqular (2k — 1)-gon Moy and a surjective map from § = {Fi,..., F3}

to the set of vertices of Maoy_1. The facets F;,, ..., F; intersect is a vertex if and only if
the triangle formed by the vertices corresponding to the rest three facets contain the center
of Mog_1.

Let a; > 1 be the number of the preimages of the i-th vertex of Mo,_1. Then for such a
polytope Py, . we have: s(P) = 3 if and only if k < 4.

Here k can be expressed in terms of bigraded Betti numbers

—1,2j _ —2,2j§
2k —1=> BVH(Zp, . )= B, . ).

J J

5 A2k —1

We also study the properties of simple n-polytopes with n + 3 facets. Let us denote ¢; =
a; + -+ Qiyp—2, ¥j = aj + - - - + a;jyr—1, where indices are taken modulo 2k — 1.

Theorem 6. For the polytope P = P, ., ., the bigraded cohomology ring C**(Zp) is
isomorphic to the free abelian group 7 @ Z**~' @ 721 & Z with the generators

1, bideg 1 = (0,0);
Xi: bldegXZ = (—1,2(,02),1 = ]_, ey 2k — ].,'
Y;, bidegY; = (=2,20;),j = 1,...,2k — 1;
Z, bideg Z = (—3,2(n + 3)).

Fork >3
Xi-X;=0 Xi Y =diyr1,;2 Y;-Y; =0,

J

and for k =2
X7 = 0, XiXip1 = X Xs =Y, X1 Xo X3 = 7.

1

In fact, it is easy to see that Zp, , . = 5?71 x §%0271 x §2%~1 and according to the
results by Lopez de Medrano [LM] for k > 3 the manifold Zp, , ~ is homeomorphic to

ol o1 2 2
sh S§%pi—l » §2With-172
i=1

See also [BM]. Our result describes additionally the bigraded structure in the cohomology ring
of the moment-angle manifold Zp,
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Cup Products in Generalized Moment Angle Complexes.

Samuel Gitler
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This is a report of joint work with A. Bahri, M. Bendersky, and F.R. Cohen

The cohomology of a generalized moment angle splits geometrically in terms of smash angle
complexes. We define a product on the direct sum of the cohomology groups of these smash
moent angle complexes so it becomes a ring which is isomorphic to that of the cohomology ring
of the given moment angle complex.
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On cohomology length of branched coverings.
Dmitry Gugnin
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We will talk about so called Dold-Smith branched coverings of topological spaces and
the correlation between cohomology (rational and mod p) of the base and the total space
of a branched covering. The branched coverings that we consider have been defined by Larry
Smith[1] in 1983 as a natural generalization of unbranched coverings on which extends the
classical notion of a (co)homological transfer. In 1986 Dold|[2| gave the full classification of these
branched coverings in terms of actions of finite groups on topological spaces. Subsequently these
coverings were called Dold-Smith branched coverings.

Let us give the definitions. All topological spaces are assumed to be Hausdorff. By Sym" X =
X"/S, we denote the n-th symmetric power of a space X. The points of Sym"X are precisely
the n-multisets [kyz1,... kszs|, ki e Nyo, € X,1 <i < s,k +...+ ks =n,2; # 5,1 # j. Let
exp,X = {A C X|1 < A < n} be the n-th exponent of X, the space of all finite nonempty
subsets of X of order not greater than n. There is a natural "forgetting multiplicities" map
(- : Sym" X — exp, X, ([kix1,...,kszs]) = {z1,..., 25}

Definition 1. Let X and Y be Hausdorff spaces. A continuous map f : X — Y is called
an n-fold Dold-Smith branched covering if there exists a continuous map ¢ : ¥ — Sym" X such
that f~'(y) = (9(y)) Yy € Y.

There exists at least three important for topology classes of maps which are Dold-Smith
branched coverings:

(i) unbranched n-fold coverings f: X — Y

(ii) projections 7 : X — X/G on the orbit spaces of finite group actions, n = |G|;

(iii) finite-fold classical branched coverings of smooth manifolds f : M™ — N™ n =
max,enn {11 (1)}

Dold’s classification theorem states that for every n-fold branched covering f: X — Y g :
Y — Sym" X, there exists a canonically obtained Hausdorff space W with an action of the
symmetric group S, such that X = W/S,_1,Y = W/S, and f =7g, s, , : W/S-1 = W/S,
is a natural orbit projection.

Using Dold’s result and classical cohomology transfer for finite group actions one can observe
that for any n-fold Dold-Smith branched covering f : X — Y, g : Y — Sym"X of "good"
spaces (it’s sufficient X,Y to be both locally contractible metric spaces or both countable
CW-spaces) the induced homomorphisms f* : H*(Y;Q) — H*(X;Q) and f* : H*(Y;Z,) —
H*(X;Z,), p> n, in singular cohomology are monomorphisms. So cohomology of Y is always
a subalgebra of cohomology of X. The question that we answer in this talk is how small
(“degenerate”) can be the subalgebra H*(Y; K) C H*(X;K), K = Q or Z,, p > n, when we
fix H*(X; K) and the number of sheets n. It turns out that the proper notion of “richness”
or “smallness” of an graded algebra is its multiplicative length (= the cohomology length of
the underlying space). Denote by [(X) the rational cohomology length of a space X, [,(X) —
mod p cohomology length of X.

Theorem. Let f : X — Y, g : Y — Sym"X be an n-fold branched covering of locally
contractible paracompact spaces such that Y x X™ s also paracompact. Then the following
estimate holds: [(Y) + 1 > %, LY)+1> W,Vp > n. These estimates are sharp for
n=2.

The proof of the theorem has required a new algebraic notion of so called graded
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Frobenius n-homomorphisms. The theory of (ungraded) Frobenius n-homomorphisms was built
by V.M.Buchstaber and E.G.Rees starting from 1996. The graded Frobenius n-homomorphisms
are special linear maps f : A* — B* of graded associative commutative algebras over a (graded)
ground ring R* for which holds a special “weak multiplicativity” axiom. 1-homomorphisms are
just algebra homomorphisms. The “weak multiplicativity” axiom for 2-homomorphisms can be
written in the way f(abc) = —1 f(a) f(D)f(c) + 5(f(a)f(bc) + f(b)f(ca) + f(c)f(ab)) (it is the
case when a, b, c € A* are of even degree, in the cases of other degrees one needs to put another
signs in the right side of the formula). It can be proved that the sum f = fi+...+f, : A* = B*,
where f; : A* — B* 1 <1 < n, are algebra homomorphisms, is an n-homomorphism. So the
sum of n algebra homomorphisms inherits some “weak multiplicativity”. This fact applied to the
transfer in cohomology of Dold-Smith branched coverings with additional algebraic technique
was used to prove the above theorem.
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Equivariant Schubert calculus of Coxeter group Ir(m).

Shizuo Kaji
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skaji@yamaguchi-u.ac. jp

Let G be a Lie group and T be its maximal torus. The homogeneous spaces G/T is
known to be a smooth variety and called the flag variety of type G. Its cohomology group
has a distinguished basis consisting of Schubert classes, which arise from a certain family of
sub-varieties. The ring structure of H*(G/T) with respect to this basis reveals interesting
interactions between topology, algebraic geometry, representation theory, and combinatorics,
and has been studied under the name of Schubert calculus.

One way to study H*(G/T) is to identify it with the coinvariant ring of the Weyl group W
of G, i.e. the polynomial ring divided by the ideal generated by the invariant polynomials of
W. From this point of view, the problem can be rephrased purely in terms of W and extended
to any Coxeter group including non-crystallographic ones. In fact, H. Hiller pursued this way
in his book “The geometry of Coxeter groups” and gave a characterization of a “Schubert class”
in the coinvariant ring.

On the other hand, G/T has the canonical action of 7" and we can consider the equivariant
topology with respect to this action. A similar story goes for the equivariant cohomology
H3(G/T) and we can consider equivariant Schubert calculus for Coxeter groups. This time
we consider a double version of a coinvariant ring. Along this line, the first difficulty
is how to find polynomials in it representing Schubert classes. By several people, such
polynomial representatives have been found for type A,, B,,C,, D,. Here we give polynomial
representatives for the non-crystallographic group of type Io(m). The main ingredients is the
localization technique, a powerful machinery of equivariant topology.
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Estimates of Zy-index of the grassmanian G4 !.

Roman Karasev
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r_n_karasev@mail.ru

The topology of the real Grassmannians has many applications in the discrete and convex
geometry. For example, some topological facts were applied to obtain some existence theorems
for flat transversals (affine flats intersecting all members of a given family of sets) in the works
of R. Zivaljevié¢, S.T. Vrecica, V.L. Dol’nikov.

In this talk we consider the Grassmannian G%, of n-dimensional subspaces of R*". This
space has a natural Zj-action (involution) by taking the orthogonal complement of the
subspace. The well-known invariant of Zs-spaces is homological index, introduced and studied
by Krasnosel’skii, Schwarz, Conner and Floyd. This invariant proved to be very useful in
applications to combinatorics and convex geometry.

The following theorem gives an estimate for the index of the Grassmannian.

Theorem. If n = 2'(2m + 1), then
2t — 1 <ind Gy, <2n—1,
for n=2m+ 1 the index equals 1, for n = 2(2m + 1) the index equals 3.

The lower and the upper bounds coincide for n = 2!, odd n, n = 2(2m + 1). In other cases
there is still some gap between them. This result easily produces some geometric consequences.
Here is one example.

Corollary. Let n = 2!(2m + 1), k = 271 — 1. Consider some k continuous (in the Hausdorff
metric) O(n)-invariant functions oy, . .., ag on (convez) compacts in R™. Then for any (convez)
compact K C R?" there exist a pair of orthogonal n-dimensional subspaces L and M, such that
for their respective orthogonal projections 7y, and my; we have

Vi=1,....k ai(my(K)) = au(mar(K)).

In this corollary «; can be the Steiner measures (volume, the boundary measure, etc.), for
example.

I This research is supported by the Dynasty Foundation, the President’s of Russian Federation grant MK-
113.2010.1, the Russian Foundation for Basic Research grants 10-01-00096 and 10-01-00139
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Moment Polyhedra, Semigroup of Representations and
Kazarnovskii’s Theorem.
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Two representations of a reductive group G are spectrally equivalent if the same irreducible
representations appear in both of them. The semigroup S of finite-dimensional representations
of G with tensor product and up to spectral equivalence is a rather complicated object. The
Grothendieck group of S contains significant information about S and is simpler to describe.
In the talk I will give its description in terms of moment polyhedra of representations.

As a corollary, one can obtain the Kazarnovskii theorem ([1]) on the number of solutions
in G of a system f; = --- = f,, = 0 where m = dim(G) and each f; is a generic function in
the space of matrix elements of a representation 7; of GG. Given a representation 7 of a classical
group G one defines its Newton polyhedron A(w) fibred over the moment polyhedron A(r) with
Gelfand-Cetlin polyhedra as fibres. Then, for classical groups, the Kazarnovskii theorem can be
formulated exactly as the famous Bernstein-Kushnirenko theorem from the Newton polyhedra
theory: the number of solutions of the system under discussion is equal to the mized volume of
the Newton polyhedra A(m) multiplied by m!. The proof is based on the intersection theory for
finite-dimensional subspaces of rational functions on algebraic varieties (see [2]-[4]).

My talk is based on a joint work with Kiumars Kaveh ([5]).
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On cohomological rigidities of toric hyperKahler manifolds.
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In [6], Masuda proved the following theorem:

Theorem 1 (Masuda). Two toric manifolds (M,T) and (M',T) are weakly equivariantly
isomorphic as varieties if and only if H}(M;Z) and H}(M';Z) are weakly H*(BT)-algebra
isomorphic.

Motivated by this Masuda’s theorem, Masuda and Suh proposed the following problem in
18]:

Problem 1 (Cohomological rigidity problem). Let M and M’ be (quasi)toric manifolds. Are
they homeomorphic (or diffeomorphic) if H*(M) ~ H*(M')?

This problem is still open, but this can be asked for the class of other manifolds. For example,
this problem can be asked for more general torus manifolds or small covers which are the real
analogue of quasitoric manifolds; however, the answers for both classes are negative (see [3, 7]).
In this talk, we study the cohomological rigidity problem for toric hyperKdhler manifolds.

Toric hyperKdihler manifolds, introduced by Bielawski and Dancer in [2], are defined by the
hyperKéahler quotient of torus actions on quaternionic spaces. This manifold can be regarded
as the hyperKéhler analogue of the symplectic toric manifolds.

In this talk, we show the following theorem:.

Theorem 2 ([3]). Let (M,, T, ua) and (M., T, i) be triples of toric hyperKéahler manifolds
with torus actions and their hyperKéhler moment maps. Then, (M,, T, uz) and (M., T, uL,) are

weakly hyperhamiltonian isomorphic if and only if there is a weak H*(BT)-algebra isomorphism
fiHy(My;Z) — Hy(M!,;Z) such that f(a) =o'

o’

Here, we call two triples (M,,T,pua) and (M., T,u.) are weakly hyperhamiltonian

isomorphic if there is a diffeomorphism f : M — M’ such that

e f is weakly equivariant map, i.e., there is an isomorphism ¢ : T'— T such that f(zt) =
f(z)p(t), where v € M and t € T}

e f preserves (weak) hyperhamiltonian structures, i.e., f preserves hyperKéhler structures
on M and M’ and the following diagram is commute:

M 5 vou
I Ly*
M S e,

where t* is the dual of Lie algebra of T, {f. is its complexification, and ¢* : t* Dty — t* DL
is the induced isomorphism from .

Moreover, we show the following theorem.

!The author was supported in part by Basic Science Research Program through the NRF of Korea funded
by the Ministry of Education, Science and Technology (2010-0001651) and the Fujyukai Foundation.
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Theorem 3 ([5]). Let M and M’ be toric hyperKéhler manifolds. Then, M and M’ are
diffeomorphic if and only if dim M = dim M’" and H*(M) ~ H*(M’).

Theorem 2 can be regarded as the hyperKihler version of the Masuda’s theorem, and
Theorem 3 gives the answer of the cohomological rigidity problem for toric hyperKihler
manifolds. That is, Theorem 3 says that the cohomological rigidity does not hold for the set
of all toric hyperKéhler manifolds, but holds for the set of 4n-dimensional toric hyperKéahler
manifolds (if n is fixed).

Due to the Bielawski’s results in [1], as a corollary of Theorem 3, we have the following
result:

Corollary 1. Let 9, be the set of 4n-dimensional, simply connected, complete, hyperKdhler
manifolds with effective n-dimensional hyperhamiltonian torus actions. Then 9N, satisfies
cohomological rigidity.
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Almost complex quasitoric manifolds

Andrey Kustarev
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We show that existence and properties of invariant almost complex structures on quasitoric
manifolds are ruled by combinatorial invariants corresponding to these manifolds. This allows
to obtain an upper bound for number of almost complex structures on a quasitoric manifold
M?": it can’t exceed 2",
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Finite group actions on aspherical spaces.

Lev Lokutsievskiy
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A new method of studying finite group actions on aspherical spaces is proposed. Some
interesting results will be shown:

1. Complete homotopy classification of finite group free actions on aspherical spaces:

Theorem: Let GG be a finite group. Then the set S of all free actions of G’ (up to homotopy
conjugation) on an Eilenberg-MacLane space K (7, 1) is in one-to-one correspondence
with a set of all extensions 1 — 7 — S — G — 1 of G by 7 . The classification of such
extensions is determined by group cohomologies H*(G) (see for example [1]).

There are also some results on the classification of non-free actions on K (m,1).

2. A connection between a structure of a subgroup lattice of a finite group G and group
cohomologies H*(G) is found. The connection is expressed in terms of Hochschild-Serre
spectral sequences. This result is obtained by using theory of classifying spaces of small
categories that was introduced by Segal and Quillen (see [2, 3]).
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Intersection of quadrics, moment-angle manifolds and
connected sums.
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Intersections of quadrics in R™ given by equations of the form
& 2 &2
i=1 =1

including their important complex versions (which are essentially the same as those called now
moment-angle manifolds):

ZC = {5 NilzP =0, ¥ |z*=1}
=1 =1

(where the coefficients A; € RF. i = 1,...,m satisfy a generic property) have been studied
from the point of view of Geometric Topology since the 80’s when they appeared (and keep
reappearing since then) in problems of Singularities of Mappings, Dynamical Systems and
Algebraic Geometry and are related to many other geometric theories.

The topology of Z for the case k = 2 was studied in [LdM1|, [LdM2| where it was shown
that they are in most cases diffeomorphic to a triple product of spheres or to the connected
sum of sphere products. The proof relied heavily on a normal form for them and involved many
computations. A geometric description of the group actions on them and of their polytope
quotients as well as that of the homology of those manifolds was equally valid for the intersection
of any number of such quadrics, but the obstacle to extending the main result for more than
two turned out to be the hopeless-looking problem of finding their normal forms, close to that
of classifying all simple polytopes.

Their study continued in other directions, especially to the projectivizations (known now
as LV-M manifolds) of the manifolds Z, which produced many new examples of non-algebraic
complex manifolds fibering over toric varieties (see [Me-V| for a review). Following these lines,
in [B-M| a deep study of LV-M manifolds included important advances on the topology of the
manifolds Z© for £ > 2. The main questions addressed in this respect were the following:

1) Whether they can always be built up from spheres by repeatedly taking products or
connected sums: they produced new examples for any £ which are so, but also showed how
to construct many cases which are not. Many interesting questions arose, including a specific
conjecture.

2) The question of the transition between different topological types when the generic
condition is broken at some point (wall-crossing).

3) A product rule of their cohomology ring (in the spirit of the description of the homology
of Z given in [LdM2]) and its applications to question 1).

Meanwhile, and independently, in [D-J] essentially the same manifolds were constructed in
a more abstract way, where the main objective was to study the algebraic topology of some
important quotients of them called initially toric manifolds and now quasitoric manifolds. This
article originated an important development through the work of many authors, and there is a
vast and deep literature along those lines for which the reader is referred to [B-P2|. Yet for a
long time no interchange occurred between the two lines of research involving the same objects,
until a small connection appeared in the final version of [B-M]|.
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In particular, it turned out that examples relevant to question 1) above were known to these
authors (see, for example, [Ba2|), and in [Bal| there is a product rule for the cohomology ring,
similar but dual to that of [B-M]| mentioned in 3) above. Those examples were independent and
more or less simultaneous to those of |[B-M| and meant to answer different questions, but both
product rules are consequences of an earlier description of the cohomology ring by Buchstaber
and Panov, the first version of which was announced in 1998 (|B-P1]).

One recent expression of this line of research is the article [B-B-C-G| where a far-reaching
generalization is made and a general splitting formula is derived. This understanding was
fundamental in the process of tracing a way for the case of £ > 2 quadrics.

The results obtained (in collaboration with Samuel Gitler) follow the three lines described
above, but including now all the manifolds Z and not only the moment-angle manifolds:

1) The identification of very general families of them which are diffeomorphic to connected
sums of sphere products, including those conjectured in [B-M]|.

2) The explicit topological description of some of the transitions.

3) The computation of the cohomology ring of an important example that shows that the
product rules have to be modified in the general version.

Nevertheless, the final proofs of these results do not depend logically on [LdM2] or [B-B-C-
G]. Several new questions and conjectures have arisen.

[B-B-C-GJ|, A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, The polyhedral product
functor: a method of computation for moment-angle complexes, arrangements and related spaces,
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A differential operator and tom Dieck-Kosniowiski-Stong
localization theorem.

Zhi Lu

Fudan University, China.
zlu@fudan.edu.cn

Abstract. We define a differential operator on the cohomology of the classifying space of
2-torus group, and study the relationship between this operator and tom Dieck-Kosniowiski-
Stong localization theorem. As a further application, we determine the group structure of
equivariant cobordism classes of all 4-dimensional 2-torus manifolds, and show that each
equivariant cobordism class in all 4-dimensional 2-torus manifolds contains a small cover as

its representative.
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Quasimorphisms, random walks, and knots.

Andrei Malyutin
Saint-Petersburg branch of the Steklov Mathematical Institute, Russia.
malyutin@pdmi.ras.ru

We study the probabilistic behaviour of quasimorphisms of groups with respect to random
walks on groups. Our results have corollaries for braid groups and knots (see Theorem 1).

Definition: completely transient subsets. Let G be a countable (discrete) group, let S
be a subset of G, and let u be a probability measure on GG. We say that S is uniformly transient
with respect to u if there exists a constant C' := C'(u) such that for any g, h € G we have

—+00
> ut(gsh) < C,
k=0

where p** is the k-fold convolution of u. (In particular, if S is a uniformly p-transient set, then
©**(S) tends to 0 as k tends to oo, so S is clearly a “small” set in a certain sense.)

We say that S is completely transient if it is uniformly transient with respect to all
nondegenerate probability measures on G. (A measure on G is said to be nondegenerate if
its support generates G as a semigroup.)

Theorem 1. In the Artin braid group B, with n > 3 the following subsets are completely
transient:

1. The set of all non-pseudo-Anosov braids (i. e., the set of all braids of periodic or reducible
type in terms of the Nielsen—Thurston classification).

2. The set N*, where N is the set of all non-pseudo-Anosov braids (for any k € N).

3. The set of those braids that represent! non-hyperbolic knots or links. (In particular, the
sets of those braids that represent trivial, non-prime, composite, split, satellite, torus
knots or links are completely transient.)

4. The set of those braids that represent knots of genus < k (for any k € N).

5. The set of non-minimal? braids.

'We consider the classical representation of (oriented) knots and links by braids in the sense of
J. W. Alexander, A. A. Markov.
2A braid B € B, is said to be minimal if the link represented by 3 is not represented by braids from B,,_;.
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Signature of manifolds with proper action of a discrete
group and the Hirzebruch type formula.

Alexander Mishchenko

Moscow State University, Russia.
asmish@mech.math.msu.su

V.A.Roklin was the first ([1]) who has written the formula for the signature of 4-dimensional
manifolds in the terms of the Pontryagin classes. For manifolds of arbitrary dimension this
formula is known as the Hirzebruch formula. The formula was generalized during throughout
more than 50 years in various directions.

Here we consider a case of manifolds with proper action of a discrete group G, that is if
for any point its isotropy subgroup is finite and the quotient space is compact. It is a natural
generalization of the category of non simply connected compact manifolds where a variety of
geometric and topological constructions can be extended.

In particular on the category of manifolds with proper action one can canonically construct
a bordism relation. For that category in the paper by P.Baum, A.Connes and N.Higson (|2])
a universal space was constructed to which any manifold with proper action of discrete group
can be mapped equivariantly up to equivariant homotopy. Due to papers by S.Illman ([3]) and
T.Korppi ([4]) we know that any smooth proper action is simplicial with respect to a simplicial
structure on the manifold M. It allows to extend for proper actions many combinatorial
constructions and to construct correspondent invariants.

Simplicial structure on the manifold with proper action of a discrete group G allows
to construct so called algebraic Poincare complex (APC). In particular the APC has
noncommutative (symmetric) signature as an element of Hermitian K—theory of the group G,
sign (M) € K*(Q|G]). sign (M) is both homotopy invariant of the manifold M and invariant
of bordisms.

Hence the problem of search of the Hirzebruch type formula for the signature sign (M)
arises in the terms of the feasible characteristic classes of the quotient space M/G. The trouble
is that the quotient space is manifold with singularities. But one can show that the space M/G
is the Poincare space for rational homology and the Pontryagin classes has representations as
invariant differential forms relative to proper action. It allows to express usual signature of the
quotient space M /G by means of the Hirzebruch type formula.

For noncommutative signature sign (M) € K*(Q[G]) one need to restore a bundle on
the quotient space M/G with structural group GL(n,C*[G]), the analog of canonical bundle
{oviq) € Ko+ (BG), that is defined by a natural representation of the group G into the group
C*-algebra C*[G].

To clarify the bordism concept for proper action one can apply so called the Conner-Floyd
construction for fixed points. Calculation of equivariant bordisms for manifolds with proper
action is reduced to description of the classifying space for equivariant vector bundles for the
case of quasi-free action of the group G on the base (|5]).

References

[1] V.A.Rokhlin, New results in the theory of 4-dimensioanl manifolds,(in Russian) Dokl. AN
SSSR.,84,(1952), p. 221 224.

106



[2] P.Baum, A.Connes, and N.Higson. Classifying space for proper actions and k-theory of group
c*-algebras. Contemp. Math., 167:241-291, 1994.

[3] S. Illman. Existence and uniqueness of equivariant triangulations of smooth proper gmanifolds
with some applications to equivariant whitehead torsion. J. Reine Angew. Math., 524:129-183,
2000.

[4] T. Korppi. Equivariant triangulations of differentiable and real-analytic manifolds with
a properly discontinuous action. In Annales Academie acientiarum fennice matematica
dissertationes,, number 141. Suomalainen Tiedeakatemia, XVC05/4352. b20453085., Helsinki,
2005.

[5] A.S. Mishchenko and Quitzeh Morales Melendes. Description of the vector G-bundles over G-
spaces with quasi-free proper action of discrete group G. arXiw:0901.3308v1[math. KT}/, page 15,
2009.
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We say that F' has a topological p-transversal of index (m, k), p < m,0 < k < d—m, if there
are, homologically, as many transversal m-planes to F' as m-planes through a fixed p-plane in
R™tE,

Clearly, if F' has a p-transversal plane, then F has a topological p-transversal of index (m, k),
for p < m and £ < d — m. The converse is not true. It is easy to give examples of families
with a topological p-transversal but without a p-transversal plane. We conjecture that for a
family F of k + p + 1 compact, convex sets in euclidean d-space RY, there is a p-transversal
plane if and only if there is a topological p-transversal of index (m, k). The purpose of this
paper is to prove some importante cases of this conjecture and to use them, together with the
Lusternik-Schnirelmann category and several versions of the colorful Helly Theorem of Lovasz,
to obtain geometric results that, until know, can not be obtained by us only with geometric
tools.

A system € of A-planes in R? is a continuous selection of a unique A-plane in every direction
of R%. More precisely, it is a continuous function Q : G(d,\) — M(d, \) with the property
that Q(H) is parallel to H, for every H € G(d, \).If v4* : E4 — G(d, \) is the standard
vector bundle of all A-planes through the origin in R?, then a system of A-planes is just a section
s:G(d,d— \) — E4* for the vector bundle y%4=2.

We use the notions of topological transversal and of system € of A-planes in R? to obtain
geometric transversal results.
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On the isometries of foliated manifolds!.
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Let M, N be n - dimensional smooth manifolds on which there are given k— dimensional
smooth foliations Fi, Fy respectively (where 0 < k < n).

If for the some C"— diffeomorphism f : M — N the image f(L,) of any leaf L, of foliation
F} is a leaf of foliation I, we say that pairs (M, F}) and (N, Fy) C"— diffeomorph. In this case
the mapping f is called C"— diffeomorphism, preserving foliation and is written as

f : (M, Fl) — (N, Fg)

In the case M = N, Fy = F» f is said diffeomorphism of foliated manifold (M, F').

Diffeomorphisms, preserving foliation, are investigated in [1], [2].

Definition.|3| Diffeomorfism ¢ : M — M a class C"(r > 0), preserving foliation, is called
an foliation isometry F' (an isometry of foliated manifold (M, F')) if it is an isometry on each
leaf foliation F', i.e. for each leaf L, foliation ¢ : L, — ¢(L,) is an isometry.

Papers [4], [5] are devoted to isometric mappings of foliations. In these papers it is
investigated question under what conditions any isometry of the foliation is an isometry of
manifold and it is proved the existence of diffeomorfism of foliated manifold on itself which is
an isometry of foliation, but it is not an isometry of manifold. It is constructed the example of
diffeomorfism of three - dimensional sphere which is the isometry of Hopf fibration but is not
an isometry of three - dimensional sphere.

Let M be a n- dimensional smooth connected Riemannian manifold with Riemannian metric
g, F-smooth k— dimensional foliation on M (In this paper manifolds and foliations have
smoothness C*°). We denote through L(p)- a leaf of foliation F' passing through point p, T,F —
tangent space to the leaf L(p) at p and H,F— it’s orthogonal complement of T, in T,M,p € M.
We get two subbundles (smooth distributions) TF = {T,F :pe M}, HF ={H,F:pe M}
of tangent bundle T'M of manifold M, and as the result tangent bundle T'M of manifold
M decomposing in the sum of two orthogonal bundles, i.e. TM = TF & HF'. Restriction
of Riemannian metric g on 7T, F for all p induces Riemannian metric on the leaves. Induced
Riemannian metric defines distance function on every leaf. Further everywhere in this paper
under the distance on a leaf is understood this distance. This distance on a leaf different from
distance induced by the distance on M.

Let’s denote as G7.(M)— the set of all C" isometries of foliated manifold (M, F'), where
r = 0. Following remarks show that notion of isometry of foliated manifold is correctly defined.

Remark 1. If » > 1, for each element ¢ € G%.(M) the differential dy preserves the length
of each tangent vector v € T,F' | i.e. holds | dp,(v) |=| v | at any p € M.

Remark 2. If r = 0 each element ¢ from G%(M) is homeomorphism of manifold M.
Riemannian metric of the manifold M induces Riemannian metric on each leaf L, which defines
distance on it. In this case ¢ is an isometry between metric spaces L, and ¢(L,). Then according
to the known theorem, ¢ is a diffeomorphism of L, on ¢(L,) for each leaf L, and it’s differential

IResearch supported by grant of the Ministry of higher and secondary specialized education OT-F1-096.
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preserves the length of each tangent vector v € T,F' | i. e. holds | dp,(v) |=| v | at any p € M
[5, the page 74]|. But as shown in the simple example, from differentiability of mapping on each
leaf does not follow it’s differentiability on all manifold M .

The set Dif f7(M) of all diffeomorphisms of manifold M onto itself is the group related to
composition and inverse mapping. The set G(M) is a subgroup of group Dif f"(M).

The purpose of our paper is to study the group G%(M) with some topology on set G.(M)
which has been introduced in the paper [6], depending on the foliation F', such that it coincides
with compact open topology when F' is n- dimensional foliation. If codimension of foliation F
is equal to n , convergence in our topology coincides with pointwise convergence.

Let {K)} be a family of all compact sets where each K is a subset of some leaf of foliation
F and let {Ug}— family of all open sets on M. We consider for each pair K and Uz set of
all mappings f € Gp(M), for which f(K)) C Us. This set of mappings we denote through
[K\, Ug) ={f : M — M|f(K)) C Us}.

It isn’t difficult to show that every possible finite intersections of sets of the form [K, Ug]
forms a base for some topology. This topology we call foliated compact open topology or in
brief F'— compact open topology.

Proposition. The set G.(M) with F'— compact open topology is Hausdorff space.

The following theorem shows some property of group G%(M)— with F'— compact open
topology.

Theorem 1. Let M- complete smooth n dimensional manifold with smooth & dimensional
foliation F, f,, € G=(M), r >0, m=1,2,3,.... Suppose, that for each leaf L, there exists
a point o, € L, such that the sequence f,,(0,) is convergent. Then there exists a subsequence
fm, of the sequence f,, which converges in /'— compact open topology.

Theorem 2. Let M — smooth complete Riemannian manifold of dimension n with smooth
foliation F' of dimension k, where 0 < k < n. Then

1) Each leaf with induced Riemannian metric is complete Riemannian manifold.

2) Let vy, : RY — L,, - sequence of geodesics (of determined by induced Riemannian metrics)
on leaves L,,. If v,,(so) — p at m — oo for the some sy € R', then there exists subsequence 7,,,
of sequence 7, which pointwise converges to some geodesic v : R — L(p) of leaf L(p), passing
through the point p at s = 5.
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Links of graphs.
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The talk will be devoted to a review of the today’s states of the problems of the homotopy
and isotopy classifications of links of finite graphs in the three-dimensional sphere.
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Constructions of 3-dimensional small covers.
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Small covers were introduced by Davis and Januszkiewicz [1] as n-dimensional closed
manifolds M" with a locally standard (Zs)"-action such that its orbit space is a simple convex
polytope. In this talk we are interested in constructions of 3-dimensional small covers M?3 by
using operations called a connected sum  and a surgery f.

In [2] Izmestiev studied a special class of 3-dimensional small covers which are called linear
models. He proved that each linear model can be constructed from the 3-dimensinal torus 7°
by using three operations f, ff and §~!. In [4] Lii and Yu considered a construction of general
3-dimensional small covers. They introduced new operations £¢, ¢, 2 and #¢ and showed the
following theorem.

Theorem (1) (Lii and Yu). Each small cover M3 can be constructed from RP3 and S x RP?
by using seven operations f#, 1, #¢, fev¢, #2, ¢ and fS.

In [3] Kuroki pointed out that the operations f¢ and ¢ are obtained as compositions of
and §. In this talk we improve the above theorem as follows.

Theorem (2). (1) Each small cover M? can be constructed from 7% RP? and S' x RP? with
two different (Zy)3-actions by using two operations f and f.

(2) Each small cover M? can be constructed from RP? and S' x RP? with two different (Z)3-
actions by using four operations f, #¢, 17! and £¢.
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In 1988, Connes and Moscovici proved the following:

Theorem - [CM] Suppose a countable discrete group m satisfies

Condition PC Every rational cohomology class of w is represented by a cocycle of polynomial
growth.

Condition RD The group 7 is RD (rapid decay).

Then the assembly map for the topological K-groups of the reduced C*-algebra C*(m) is
rationally injective.

The condition PC is easily expressed in terms of the standard representation of group
cocycles. The second condition is more technical, dealing with the existence of a certain type of
subalgebra of C* (). It is also apparently more restrictive, since the known examples of groups
satisfying condition RD also satisfy condition PC.

We show that Condition RD above can be removed without affecting the conclusion of the
theorem. First, some terminology. Let (7, L) be a discrete group equipped with word-length
function L, and let PH*(w) = PH*(m;C) denote the polynomially bounded cohomology of
(7, L) with coefficients in the trivial 7-module C. There is a comparison map

U=V, :PH"(m) — H"(m) 9)

whose image consists of those classes which can be represented by a group cocycle which is

polynomially bounded with respect to the word-length function L on 7 and the standard norm
on C. Let

Ar s @ Heoom(m Q) = Ki(CF(m) ©Q

denote the assembly map going from the (rationalized) connective K-homology groups of B
to the (rationalized) topological K-groups of C*(m)).

Theorem A For each H"(m) 3 [c] € im(V), there is a map ¢ : KL(C!(7m)) @ Q = C for
which
1 (Ar(Tn, T2y Tpeas ... ) =< ¢, 2, >€ C (10)

Observing that the construction of ¢y arises via the extension of a cyclic group cocycle
originally defined over the complex group algebra, the Index Theorem of Connes-Moscovici
(following that of Mishchenko-Fomenko) allows us to reformulate the above result as

Theorem A’ Let M be a closed, compact, oriented n-dimensonal manifold, L(M) its total
Hirzebruch L-class, [M] its fundamental homology class, and v : M — Bmy (M) the classifying
map for the fundamental group of M. Then the higher signatures

Signe(M) := (L(M)e"(c), [M]) € Q
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are invariants of the orinted homotopy type of M whenever [c] € H*(m; Q) is represented by a
cocycle whose growth - with respect to a word-length function on © and the standard norm on
Q - is at most polynomial.

It is an easy to show using Bott periodicity that if the assembly map A, is injective, so is
the full (rational) assembly map

Azt ® Hy 0p(m;Q) = KLCH (7)) @ Q (11)

meZ

Consequently,

Corollary B If every rational homology class of m pairs non-trivially with a cocycle of
polynomial growth, then the full assembly map A is injective.

To describe a class of groups for which Corollary B applies, we recall that 7 is said
to be P-isocohomological (or P-IC) if the comparison map in (9) is an isomorphism, and
strongly P-isocohomological (P-SIC) if the comparison map

UL (m V) : PH*(m; V) — H*(m; V) (12)

is an isomorphism for all bornological H; ™ (7)-modules V', where H,; ™ () is the /*-rapid decay
algebra associated to m. The groups PH*(m; V') and thus the properties P-IC and P-SIC are,
in general, sensitive to the choice of word-length function on 7, and are more precisely functors
of (m, L) (unless otherwise indicated, L is assumed to be the stand word-length functon on ).
Combined with the corollary above, we have

Theorem B SNC(r) holds true whenever 7 is P-IC. In particular, it holds for all P-SIC
groups.

By results of the author and Ji-Ramsey, the class of PP-SIC groups is an easily-describable
subset of the class of HEF'* groups (those where Br ~ X a complex with finitely many cells in
each dimension). The following theorem represents joint work with R. Ji and B. Ramsey.

Theorem C [JOR2| The class of P-SIC groups is equal to the class of HF™ groups with
polynomially bounded Dehn functions in each degree. It includes all discrete groups which are
asynchronously combable in polynomial time, and is closed under arbitrary extensions in the
category of groups with word-length'; moreover, if © acts cofinitely and without inversion on
a weighted acyclic simplicial complex X whose simplicial chains admit a polynomially bounded
chain contraction, and the isotropy group of each simplex s P-SIC with respect to the induced

word-length, then 7 is P-SIC.

The constraint imposed by the slightly technical “Dehn functions” appearing in the above
result is clarified by the following topological reformulation, due to Ji and Ramsey.

Equivalence of Dehn functions - [JR] For an HF* group =, the Dehn functions of
are polynomially equivalent to the “course” Dehn functions of 7, defined using filling norms.

La short-exact sequence of groups with word-length (G1, L1) — (G2, L2) — (G3, L3) consists of a short-exact
sequence of groups where L; is the restriction of Ls to GG, and Lg is the word-length function on G5 induced
by Lo and the projection Go — Gs. In particular if Gy is P-SIC with respect to the standard word-length, then
in order for (G1, L1) to be P-SIC, one typically needs the image of G; to be at most polynomially distorted in
G5 under the injection G; — Gs.
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In other words, ™ has polynomially bounded Dehn functions iff there exists an HF* K(rm,1)-
complex X whose universal cover X satisfies the condition:

e For all m > 1 there exists a polynomial p, such that for every map f : S" — X of a
combinatorial n-sphere S™ to X, f extends to a map f : B"™' — X where B"™! is a
combinatorial n + 1-disk for which (# of cells of B"*1) < p,(# cells of S™).

The last item in Theorem C generalizes to

Theorem D [JOR2| If m acts cofinitely and without inversion on a weighted acyclic
simplicial complex X whose simplicial chains admit o polynomially bounded chain contraction,
and the isotropy group of each simplex is P-IC with respect to the induced word-length, then m
is P-IC.

P-SIC includes all CAT(0)-groups, as such groups admit synchronous linear combings.
Poincaré Duality groups provide another class of groups where this condition holds under
seemingly mild constraints.

Theorem E [JOR2| Suppose Bmw =~ M, where M is a compact, closed, oriented n-
dimensional manifold. Let pl € H"(M x M) = H™(w X ) denote the fundamental cohomology
class dual to the diagonal embedding A(M) C M x M. If p! is P-bounded, then w is P-IC.

™

Conclusion The groups described by the Theorems C, D, and E all satisfy SNC(r).

On the other hand, there exist elementary amenable groups which are not P-IC, including
solvable groups with quadratic first Dehn function. A detailed discussion of these issues and
examples (in both the positive and negative direction) appears in [JOR2].

Cones of effective two-cycles on toric manifolds.

Hiroshi Sato
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The Kleiman-Mori cone, that is, the cone of effective one-cycles on an algebraic variety is
one of the most important objects in the birational geometry. As a next step, in this talk, we
study the cone of effective two-cycles on a smooth projective toric variety. We explain about
the combinatorial description for numerical two-cycles on a toric manifold. As an application,
we can determine whether a given toric manifold is a 2-Fano manifold or not easily.
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Which compact smooth manifolds (no boundary) do admit a Riemannian metric with
positive scalar curvature? If there is one, how many are there?

In this talk, we focus on the second question: does the space of metrics of positive scalar
curvature posses a rich topology?

It is well know that the space of such metrics, as well as the moduli space (moduli the
action of the diffefomorphism group) has typically infinitely many components; detected by
index invariants or secondary index invariants (rho invariants) (results of Hitchin, Lawson,..)
Moreover, Hitchin shows that in certain dimensions the first homotopy group of the space of
metrics is non-trivial. Some people conjectured, that all components of the moduli space are
contractible.

In joint work with Boris Botvinnik, Bernhard Hanke, Mark Walsh we use the topology of the
classifying space of the Diffeomorphism group of DV (in particular non-trivial higher torsion)
to produce non-trivial homotopy classes in 7, for arbitrarily large n. The construction is based
on a famous smooth fiber bundle by Hatcher. However, these classes do not lift to the space of
metrics itself.

In joint work with Diarmuid Crowley we show that also the space of metrics has non-trivial
classes in m, for arbitrarily large n. They are transported from Diff via the action and are based
on non-trivial products in stable homotopy groups, detected in real K-theory.

We will explain the relevant invariants and the constructions of the families of metrics.
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Manifolds with torus action
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Suppose that k-dimensional torus T* semi-free act on n-dimensional closed smooth manifold
W"(n >k > 1) and let M{,..., M closed submanifolds of fixed points. Let f : W" — R be a
smooth T*-invariant function on W™ and let X the set of singular points of f.

Definition 1. The function f is called Morse-Bott function if ¥ is disjont union of non-
degenerate closed submanifolds M!,..., ]\4}J and and some number of T*.

Theorem 1. Every smooth semi-free T* action on manifold W™ with Mi,..., ]\4}J submanifolds
of fized points has an T*-invariant Morse-Bott function f.

Definition 2. Let f be an T*-invariant Morse-Bott function for smooth semi-free T* action
with M{,..., M} submanifolds of fixed points on W". Suppose that the index of a critical
submanifold M} of f is \;. The state of f is the collection of numbers A, A, ..., \,, which
we will be denoted by St;(\;).

Definition 3. Let W" be a manifold with smooth semi-free T*-action which has Mj,..., M
submanifolds of fixed points. The T*-equivariant Morse number MY, (W™, St();)) of index
v of a state St()\;) of W™ is the minimum number of singular 7% of index v taken over all T*-
invariant Morse-Bott functions on W™ with state St(\;). The T*-equivariant Morse number

7 (W) of index v of W™ is the minimum number of MY, (W™, St();)) taken over all states.
The T*-equivariant Morse number M (W™ St()\;)) of a state St();) is the minimum
number of singular T% of all indices taken over all T*-invariant Morse-Bott functions on W™
with state St(\;). The T*-equivariant Morse number M (W") of W" is the minimum
number of My (W™, St();)) taken over all states.

There is an unsolved problem: for a manifold W with a semi-free T*-action which has
My{,..., M} submanifolds of fixed points find exact values of MY, (W", St(};)), MY, (W™"),
MTk(Wn, St()\l)), and MTk(Wn)

Definition 4. An T*-invariant Morse-Bott function f on W™ with semi-free T*-action which
has which has M},..., M} submanifolds of fixed points is

~ minimal for index v of a state St()\;) if the number of singular T% of f of index v is
equal to MY, (W™, St(\));

— minimal for index v if the number of singular T% of f of index v is equal to ML (WT);

— minimal for state St()\;) if the number of all singular circles of f is equal to
Mo (W™ St(N));

— minimal if the number of all singular T% of f is equal to My« (W™).

Theorem 2. Let W™ (n > 2k) be a simply-connected manifold with free homology group of
H;(W™ Z) admits a smooth semi-free T*-action which has M!,..., Mé submanifolds of fixed
points. Then on W™ for the sequence (0,...,0,n —1,...,n — 1) there exists a minimal T"-
invariant Morse-Bott function g for the state St(0,...,0,n—1,...,n—1).
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Characteristic classes of simplicial manifolds:
combinatorics, electric circuits and homological algebra.

Georgy Sharygin
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sharygin@itep.ru

This talk is a report on the ongoing joint project of the author and Nikolai Mnev from
PDMI.

In topology the term “simplicial n-manifold” refers to a n-dimensional simplicial complex,
such that the links of all its k-simplices for all k£ are simplicial subdivisions of the standard
n — k — 1-dimensional sphere. It is well-known, that one can define characteristic classes
(Pontrjagin classes, Euler class, etc.) for arbitrary simplicial manifolds, or, more generally, for
any homological manifold (i.e. where the condition above is replaced by a still weaker condition,
that all the links have homology, isomorphic to that of the corresponding sphere), in such a
way that the expressions depend only on the local combinatorial structure of the complex (this
was proved for example by R.Thom, Levitt and Rourke etc.). The problem of finding such
expressions in an explicit form is a long-standing one. Among many authors that contribute to
this field one can list Levitt and Rourke, Gabrielov, Gelfand and Losik, McPherson, Gaifullin
etc.

In my talk I am going to give a description of a new approach to this question, which is
based on the extensive use of the recently discovered by N.Mnev combinatoric construction,
equivalent to the PL bundles. This construction (called the “combinatorial sphere bundle” or
the “Gauss functor”) associates to every simplex in a simplicial manifold X a cellular subdivision
of nsphere and an aggregation map to every pair of adjoint simplices in X. It was shown by
N.Mnev that this data is equivalent to the “normal PL bundle of the diagonal embedding” used
by Levitt and Rourke.

In our joint work we use this construction and pass from the geometric picture to the level
of cochain complexes. In order to associate a chain map to an (abstract) aggregation we resort
to the canonical euclidean structures on the complexes. This approach is quite canonical and
enables one to write down explicit formulas for some characteristic classes, e.g. the Euler class.
Calculations thereof involves manipulations with the so-called Kirhgoff laws for calculation of
electric flows in an electric circuits and give quite unexpected coefficients. On the other hand,
once in the domain of homology one can use the standard tools of the homological algebra, such
as the homotopy equivalence of the DG algebras, perturbation technics etc., which leads one
to a rather involved, but quite explicit formulas, that give an analog of the noncommutative
1-cocycle, twisting cochains with values in an appropriate Cech complex and finally enables one
to mimick the constructions of Bott, Dupont and the author of the characteristic classes.
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Classification of embeddings below the metastable
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Statement of the main result.

For a smooth (piecewise linear, PL) manifold N denote by E™(N) (EP,(N)) the set of
smooth (PL) embeddings N — R™ up to smooth (PL) isotopy.

The ‘connected sum’ commutative group structure on E™(S?) was defined for m > ¢ + 3
by Haefliger. We define an ‘SP-parametric connected sum’ commutative group structure on
E™(SP x S1) and E}, (SP x S9) for m > 2p + q + 3; cf. [Sk07, PCS|.

Denote by Vi, the Stiefel manifold of I-frames in R”.

Main Theorem. [Sk06] For p > 1 and m > max{2p + ¢ + 3, 2433}

E™(S? x 81 2 1y(Vin—gpr1) @ Em(Serq) and  Ep(S? x 81) = 1y(Vin_gpt1)/Smp.as

where for 2m > 2p + 3q + 3 we have Sy, = 0 while for 2m = 2p + 3q + 3 we set | :=
m—p—q—1=(q+1)/2 and we have that s,,,, is an integer multiple of the image of [u, u]

under the map " from the exact sequence 7,(S) S— 7,(Vin_qpi1) = Tg(Vin_qp) 0f the bundle
defined by forgetting the last vector.

In the smooth case the isomorphism from the right to the left is 7 @ #. Here #(g) is the
connected sum of the standard embedding S? x S — R™ with embedding ¢ : SPT9 — R™. The
PL analogue 7p;, is defined analogously and is an epimorphism with the kernel s, ,, ;.

Definition of the map T [Sk02, proof of Torus Lemma 6.1, Sk08, §6|. Recall that 7 ,(V,,—gp+1)
is isomorphic to the group of smooth maps S? — V,,,_, ,+1 up to smooth homotopy. These maps
can be considered as smooth maps ¢ : S x S? — 9D™ 4. Define the smooth embedding 7(p)
as the composition

SP x 89785 9Pt x §1 c D™ x §9 C R™,
Here pr, is the projection onto the second factor and C are standard inclusions.

Discussion of the main result.

This paper is on the classical Knotting Problem: for an n-manifold N and a number m,
describe isotopy classes of embeddings N — R™. For recent surveys see [RS99, Sk08, HCEC]|.

Many interesting examples of embeddings are embeddings S? x S¢ — R™, i.e. knotted
tori. See references in [KT|. A classification of knotted tori is a natural next step (after
the Haefliger link theory and the classification of embeddings of highly-connected manifolds)
towards classification of embeddings of arbitrary manifolds. Since the general Knotting Problem
is very hard |[HCEC]|, it is very interesting to solve it for the important particular case of
knotted tori. Classification results for knotted tori gives some insight or even precise information
concerning arbitrary manifolds (this is formalized in [SkO7], [Sk10], [PCS]) and reveals new
interesting relations to algebraic topology.

We have E™(SP x S7) = EP,(SP x S?) =0 for p < g and m > p + 2¢q + 2 |Sk08, Theorem
2.8.b]. In particular, the Main Theorem is trivial for p > ¢. From now on assume that p < q.
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The Knotting Problem is more accessible for
2m > 3n + 4.

In particular, E™(S™) = 0 for 2m > 3n + 4. Thus for 2m > 3p + 3¢ + 4 the Main Theorem is
known [Sk02, Corollary 1.5].

The Knotting Problem is much harder for 2m < 3n-+4:if N is a closed manifold that is not a
disjoint union of spheres, then until recent results no complete readily calculable smooth isotopy
classification was known, in spite of the existence of the interesting approaches of Browder-Wall
and Goodwillie-Weiss.

However, if a closed manifold N is d-connected and

3n+4>2m>3n+3—d,

there are classification results in the PL category [Sk02, Sk08, §3|. Thus the PL case of the
Main Theorem is known for 3p + 3¢ +4 > 2m > 2p + 3q + 4. The smooth case of the Main
Theorem for 3p+ 3q +4 > 2m > 2p + 3q + 4 is new but is not hard. This case follows by the
PL case and the following result [Sk06]:

E™(SP x S7)
im #

If N is a closed d-connected m-manifold, then the Knotting Problem is much harder for

2m < 3n+2—d because even the classification in the PL category is unknown (and methods of

[Sk02, Sk08’, Sk05, CS08| do not work without modification). The most interesting and the most

diffi cult case of the Main Theorem is 2m = 2p + 3q + 3, which corresponds to the ‘boundary’
case

E™(SP x §9) = ® E™(SPTY) for m >2p+q+3.

2m=3n+2 —d.

This case 2m = 3p+ 2q+ 3 requires new ideas which are hopefully are interesting in themselves.

The methods which we develop for the ‘boundary’ case can be extended to classify embeddings
in other cases [CRS07, CRS08|.
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Toric genera of homogeneous spaces and their fibrations.
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We present the results on universal toric genus obtained as continuation of our work [3] on
universal toric genus of homogeneous spaces.

The notion of universal toric genus was introduced in [2| and explained in detail in [1]. It
can be constructed for any even dimensional manifold M/?" with a given torus action and stable
complex structure which is equivariant under the torus action. If the torus action has finite set
of isolated fixed points than the universal toric genus for such action can be localized meaning
that it can be expressed in terms of signs and weights at fixed points for the representations
that gives arise from the given torus action. Appealing to this result, it is obtained in [3] an
explicit formula for the universal toric genus of homogeneous spaces G/H endowed with the
canonical action of the common maximal torus for G and H, where rk H = rk G. Applying the
Chern-Dold character, the explicit formulas for the complex cobordism classes as well as the
Chern characteristic numbers for these spaces are established.

We study further the notion of the universal toric genus on some specific homogeneous
spaces and expand it to some fibrations. We generalize our results from [3] on universal toric
genus of flag and Grassman manifolds to an arbitrary invariant almost complex structure as well
as to the generalized Grassman manifolds. We also consider homogeneous fibrations H/K —
G/K — G/H where all groups have equal ranks and assume that the fiber and the base are
endowed with the invariant almost complex structures. It is obtained the explicit formula, in
terms of the local data for the base and the fiber, for the universal toric genus as well as for
the cobordsim class for G/K related to the induced invariant almost complex structure. It
is also studied the muiltiplicativity problem for universal toric genus of these fibrations and
established the effective criterion for it to be classically multiplicative. We expand the results
from homogeneous to an arbitrary fibrations. Given two stable complex manifolds X and F’ with
an equivariant action of the torus 7% we provide the construction of a T*- equivariant stable
complex manifold £ which fibers over X with fiber F' and whose stable complex structure and
torus action naturally arises from those of X and F'. The explicit formula for the universal toric
genus of F is obtained and established the condition to be multiplicative. As an application we
provide, in particular, some characteristic fibrations of compex and quaternionic flag manifolds
U(n)/T™ and Sp(n)/T™.

The talk is based on the joint work with Victor M. Buchstaber [4].
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Homotopy decompositions of gauge groups and
applications to moduli spaces.
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We focus on gauge groups of principal U(n)-bundles over orientable Riemann surfaces. In
many cases the gauge groups are decomposed, up to homotopy equivalence, as products of other
more well known spaces. As a consequence, the calculation of their homotopy groups reduces to
that of spheres or U(n).This can then be applied to calculate the homotopy groups of certain
moduli spaces through a range, answering a question of Daskalopoulos and Uhlenbeck.
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Complex structures on moment-angle-manifolds.
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Moment-angle-complexes Zy, associated to a simplicial complexes K, were studied by
many authors in context of ’toric topology’. It is well-known, that in many cases moment-
angle-complexes are topologic manifolds. We show that the moment-angle-manifold associated
to a complete simplcial fan admits smooth and complex structures. Moment-angle-manifolds
endowed with these complex structures provide an interesting series of compact non-symplectic
complex manifolds, including classic examples of Hopf and Calabi-Eckmann. We describe
these manifolds as holomorphic principal T*-bundles over compact toric varieties and compute
(additively) their Dolbeault cohomology.

Gaudin subalgebras and stable rational curves

Alexander Veselov

Loughborough University, United Kingdom and Moscow State University, Moscow.
A.P.Veselov@lboro.ac.uk

Gaudin subalgebras are abelian Lie subalgebras of maximal dimension spanned by
generators of the Kohno—Drinfeld Lie algebra t,, which can be interpreted as the holonomy
Lie algebra of the configuration space of n distinct points on the complex plane, or the set of
values for the universal Knizhnik-Zamolodchikov connection.

I will explain that Gaudin subalgebras form a variety isomorphic to the moduli space ]\7[0,n+1
of stable curves of genus zero with n + 1 marked points. In particular, this gives an embedding
of My, 11 in a Grassmannian of (n — 1)-planes in an n(n — 1)/2-dimensional space.

The talk is based on a joint work with Aguirre and Felder.
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Upper and lower bounds for nestohedra
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Simple polytopes play important role in toric geometry and topology. The classical problem
of upper and lower bounds for h-vectors of n-dimensional simple polytopes with fixed number
of facets is solved in [Bal|, |Ba2| and [Mc|.

Nowadays there appeared an important subclass of simple polytopes - Delzant polytopes.
For every Delzant polytope P" there exists a Hamiltonian toric manifold M?" such that P" is
the image of the moment map. Davis-Januszkiewicz theorem states that odd Betti numbers
bo;_1(M?") are zero and even Betti numbers by;(M?") are equal to components h;(P") of
the h-vector of P"™. So, the problem of upper and lower bounds for A-vectors of Delzant
polytopes become actual, because its solution gives upper and lower bounds for Betti numbers
of Hamiltonian toric manifolds.

Feichtner and Sturmfels (see [F'S]) and Postnikov (see [1]) showed that the Minkowski sum
of some set of regular simplices is a simple polytope if this set satisfies certain combinatorial
conditions identifying it as a buiding set. The resulting family of simple polytopes was called
nestohedra in [PRW] because of their connection to nested sets considered by De Concini and
Procesi in the context of subspace arrangements. From results of [FS| directly follows that
nestohedra are Delzant polytopes. Special cases of building sets are vertex sets of connected
subgraphs in a given graph; the corresponding nestohedra called graph-associahedra by Carr
and Devadoss were first studied in [CD|.

From [FM] we know that if B; C B, for connected building sets, then Pp, is obtained from
Pg, by sequential shaving some faces, consequently, h;(Pg,) < h;(Pp,). Therefore, h;(A") <
hi(Pg) < h;(Pe™) for every n-dimensional nestohedron Pg and these bounds are unimprovable.

In the combinatorics of flag simple polytopes especially interested is ~y-vector. Using
|[Bul| and definitions of g-,h- and f-vectors one can prove that componentwise inequality
v(P1) < v(P,) for simple n-polytopes P, and P, implies componentwise inequalities:g(P;) <
9(P2), h(Pr) < h(P2), f(P1) < f(P).

Gal’s conjecture (which is a generalization of famous Charney-Davis conjecture) states
that flag simple polytopes have nonnegative 7-vectors (see |G|). In [Bu2| it was described
realization of the associahedron as a polytope obtained from the standard cube by shaving
faces of codimension 2. We show that every flag nestohedron has such a realization. As a
corollary we derive that unimprovable bounds for -vectors of flag nestohedra are (I™) and
v(Pe™). That includes Gal’s conjecture for flag nestohedra, since ~;(I™) = 0,7 > 0.

There are remarkable series of graph-associahedra corresponding to series of graphs:
associahedra As™ (path graphs), cyclohedra C'y" (cyclic graphs), permutohedra Pe™ (complete
graphs) and stellohedra St" (star graphs). Using these series we obtain upper and lower bounds
for ~-vectors of graph-associahedra and some its important subclasses.

The main result is following:

Theorem. There are following unimprovable bounds:
1) vi(I™) < vi(Pp) < v:(Pe™) for any flag n-dimensional nestohedron Pg;
2) vi(As"™) < vi(Pr,,,) < vi(Pe™) for any connected graph I'y1q on [n+ 1];

3) v(Cy"™) < vi(Pr,,,) < vi(Pe™) for any Hamiltonian graph I'yq on [n+1];
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4) Vi(As™) < v(Pr,...) < 7(St") for any tree I'yiq on [n 4+ 1].

The sitmilar bounds also hold for f-,qg- and h-vectors.
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Torus fibrations and localization of index.
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This talk is based on the joint work [3, 4] with Hajime Fujita and Mikio Furuta.

Let M be a possibly non-compact Riemannian manifold and W a Zs-graded Clifford module
bundle on M. Suppose that M has an open subset V' with complement M \ V' compact and V'
is covered by finitely many open subsets {V,, },ca such that each V,, has a structure of the total
space of a torus bundle 7, : V,, — U, and each W|y, is equipped with a Dirac-type operator D,
along fibers of m,. Under some compatibility and acyclicity conditions we will show that there
exists an integer ind(M, V') depending on the all data such that ind(M, V') has the following
properties:

1. ind(M,V) is invariant under continuous deformations of the data.

2. If M is closed, then ind(M, V) is equal to the index ind D of a Dirac-type operator D on
w.

3. Suppose V' is an open subset of V' with M \ V' compact such that the torus bundle
structures on V can be restricted to V’. Then we have

ind(M, V) = ind(M, V).

4. Suppose M’ is an open neighborhood of M \ V' such that the torus bundle structures on
V' can be restricted to V' N M’. Then ind(M, V') has the following excision property

ind(M, V) = ind(M',V 0 M’).

5. Suppose M is a disjoint union M = M; [[ Ms. Then we have the following sum formula

ind(M, V) = ind(My, V N M) + ind(Ma, V N Ms).

6. We have a product formula for ind(M, V). For the precise statement see [4, Theorem 5.8].

We call ind(M, V) a local index. In the case where M is closed, as a corollary we obtain a
localization formula for the index of a Dirac-type operator on W.

To construct ind(M,V) we introduce a deformation of a Dirac-type operator by using
D,’s. The deformation allows an interpretation as an adiabatic limit or an infinite dimensional
analogue of Witten’s deformation.

We will describe an application to symplectic geometry. For a closed symplectic manifold
with prequantization line bundle the Riemann-Roch number is defined to be the index of a
Spin¢ Dirac operator with coefficients in the prequantization line bundle.

Suppose the symplectic manifold is equipped with a structure of the total space of a
Lagrangian fiber bundle. Note that the restriction of the prequantization line bundle to each
fiber is flat. A fiber of the Lagrangian fiber bundle is said to be Bohr-Sommerfeld if the
restriction of the prequantization line bundle to the fiber is trivially flat. Bohr-Sommerfeld

!Partly supported by Grant-in-Aid for Young Scientists (B) 22740046, Grant-in-Aid for Scientific Research
(C) 20540089, and Fujyukai Foundation.
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fibers appear discretely. Then it is known in [1] that the Riemann-Roch number is equal to the
number of Bohr-Sommerfeld fibers.

Similar phenomena have been observed for several examples of Lagrangian fiber bundles
with singular fibers, such as,

e moment maps of toric varieties [2],
e Gelfand-Cetlin’s completely Hamiltonian system for a complex flag manifold 7],

e Goldman’s Hamiltonian system on the moduli space of flat SU(2)-bundle on a Riemann
surface |5, 9],

and for non symplectic generalizations
e presymplectic toric manifolds [10],
e Spin® manifolds (6],
e torus manifolds [11, §],

and so on.

We will apply the localization formula for the local index to understand these phenomena
and show that the Riemann-Roch number is described as the sum of the number of nonsingular
Bohr-Sommerfeld fibers and the contributions from singular fibers.
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Discrete and continuous complexes and posets in
topological combinatorics.
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We collect together and analyze from the same point of view some important classes of
complexes which exhibit both discrete and continuous nature and which have continually played
an important role in topology, combinatorics and their applications. Among the key examples
are:

(1) Moment-angle complexes Zx and polyhedral product functors (X, A)X as “continuous
complexes” over a discrete (simplicial) complex K.

(2) Homotopy colimits of diagrams as continuous complexes over the corresponding (face)
poset.

(3) Continuous posets in the sense of Vassiliev and discrete-continuous polytopes in the sense
of Kalai and Wigderson, continuous “Bier-spheres”.

(4) Convex hulls of neighborly embedded manifolds (complexes).

(5) “Continuous inflation” of simplicial (polyhedral) complexes as a continuous analog of the
discrete inflation of complexes (A. Bjorner, M. Wachs, V. Welker, Poset Fiber Theorems,
T.AM.S., 2005).

(6) Complexes of “vertex-colored polytopes” (after de Longueville and Zivaljevi¢) with discrete
and continuous sets of colors, etc.

A unified framework for studying discrete-continuous analogues of complexes and posets
(with the emphasis on combinatorially and geometrically motivated constructions and
invariants) was proposed by the author in the paper “Combinatorics of topological posets:
Homotopy complementation formulas”, Adv. Appl. Math. 21 (1998), 54711-574.

This paper continued the program of using homotopy colimits and related constructions in
geometric and topological combinatorics which was initiated in Ziegler-Zivaljevié, Math. Ann.
1993, and Welker—Ziegler—ZivaljeVié, J. Reine Angew. Math. 1999. For more recent applications
of homotopy colimits and other homotopical methods the reader is referred to Panov-Ray-
Vogt, arXiv:math/0202081v1 [math.AT|; Panov-Ray, arXiv:0707.0300v2 [math.AT|, and Bahri-
Bendersky-Cohen-Gitler, arXiv:1001.3372v1 [math.AT)|.

We plan to give a brief overview of the area emphasizing the interplay of discrete and
continuous in some fundamental constructions (Vassiliev geometric resolutions, convex hulls
of neighborly polytopes, etc.). As an illustration of the use of complexes of “vertex-colored
polytopes” (joint work with Mark de Longueville, Advances in Mathematics, 2008) we exhibit a
“Multidimensional splitting necklace theorem” which extends the well known one-dimensional
case due to Noga Alon.
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Section “Algebra and Number Theory”

On symmetry groups of quasicrystals.

Vyacheslav Artamonov
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A mathematical model for crystals was presented by B. Delonias. It involves the notion of
a symmetry group of a crystal as a subgroup of isometry group of an Euclidean space.

In 1984 a new alloy Al s¢Mng 14 was discovered with a symmetry which was not allowed in
the symmetry theory of crystals. The new metallic alloys are called quasicrystals.

The most common mathematical models of quasicrystals is a cut and project scheme. Let
E be an Euclidean space with a direct decomposition £ = U &V and with a discrete subgroup
M such that E/M is compact, M NV = 0 and p(M) is dense in V. Consider the diagram of
projections of groups

U E P V.
U
M

A nonempty compact convex subset W C V is a window if W is the completion of its interior. A
proper symmetry group Sympy @ of a quasicrystal @) is the group of all affine transformations
of the hyperspace E which map the set () bijectively onto itself. A general symmetry group
Sym is a group of all affine transformation of the hyperspace E such that M is Sym-invariant
and U is stable under all differentials of elements of Sym. It is shown that Symy;, ) C Sym .

These is found a classification of subgroups of Sym of the form Symy; () for some window
W. The class of these subgroups contain finite subgroups of Sym. There is found a classification
of finite subgroups in Sym in the case when dimensions of U,V is at most 3.
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Simultaneous Diophantine approximations and
generalizations of the continued fraction.

Alexander Bruno
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In the space R™, suppose that we are given [ homogeneous linear forms and k£ homogeneous
quadratic forms; each quadratic form is the product of two complex conjugate linear forms, and
[ 4+ 2k = n. The moduli of all m forms (m = k + [) define a mapping of R™ to the nonnegative
orthant R" of the space R™. Nonzero integer points from R" are mapped to a set Z C R'. The
closure of the convex hull G of Z is a polyhedral set in R’. Its boundary 9G is of dimension
m — 1 and contains the images of the best Diophantine approximations to the root subspaces
of all m forms. In the algebraic case, m forms are related in a certain manner to the roots of
an irreducible polynomial of degree n that has [ real roots and k pairs of complex conjugate
roots. It is proved that, in the algebraic case, the boundary G has m — 1 independent periods.
This is a generalization of Lagrange’s theorem on the periodicity of the continued fraction of a
quadratic irrationality.

For small m see [1-6] and for arbitrary m see [7].
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Transference inequalities for Diophantine exponents.
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Consider a system of linear equations

Ox =y
with x € R™, y € R" and
011 O1m
o= : -~ |, i € R.
enl enm

Definition 7. The supremum of real numbers v, such that there are infinitely many x € Z™,
y € Z" satisfying the inequality
0% — ¥loo < X[

where ||, denotes the sup-norm in the corresponding space, is called the individual Diophantine
ezponent of © and is denoted by 5(0O).

Definition 8. The supremum of real numbers v, such that for each ¢ large enough there are
x € Z™, y € Z" satistying the inequalities

0< |X‘<>O <t |®X - Y‘oo < t_’ya
is called the uniform Diophantine exponent of © and is denoted by «a(©).

The talk is devoted to the relations between the quantities «(0), a(OT), 5(0), (OT), where
OT denotes the transposed matrix. New inequalities will be proposed, which generalize or refine
the existing results of Jarn ik, Khintchine, Apfelbeck, Dyson, Laurent, Bugeaud and others.
Besides that, the method used to obtain these inequalities allowed to improve the classical
Mahler’s transference theorem.

1. Uniform exponents

The strongest result connecting «(0) and a(OT) used to be the following theorem proved by
Apfelbeck:

Theorem 1. (i) We always have

na(0)+n—1
(m—1)a(®)+m"

a(OT) >

(13) If m > 1 and a(©) > (2(m+n — 1)(m +n — 3) +m)/n, then

n(na(©) —m) —2n(m+n — 3) )

a1 (s
a(OT) > ( +(m_1)(na(@)_m)+m—(m—2)(m+n—3)

m

1 This research was supported by RFBR. (grant N° 09-01-00371a) and the grant of the President of Russian
Federation N° MK-1226.2010.1.
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Our first result improves Theorem 1:

Theorem 1. For all positive integers n, m, not equal simultaneously to 1, we have

n—1

o m— (@) if a(©)<1,
a(®7) 2 n—a(@)! ,
ﬁ, ’Lf Oé(@) 2 1.

2. Individual exponents

The classical Khintchine’s transference theorem connects §(0) and 3(OT7) in the case n = 1:

Theorem 2. Ifn =1, then

These inequalities cannot be improved if only 5(©) and [(OT) are considered. However,
stronger inequalities can be obtained if a(©) and «(©OT) are also taken into account. The
corresponding result belongs to Laurent and Bugeaud:

Theorem 3. Ifn =1, then

(«(©) —1)5(O)

(1—a(O7)B(0) —m+2—«a(O7)
((m—=2)a(©) +1)(0) + (m — 1)a(O) '

m—1

< BO7) <
Theorem 2 was later generalized to the case of arbitrary n, m by Dyson (a simpler proof

was later obtained by Khintchine):

Theorem 4. For all n, m, not equal simultaneously to 1,

nB(O) +n—1
(m—1)3() +m

per) =
Our second result generalizes Theorem 3 and improves Theorem 4 the way Theorem 3
improves Theorem 2:

Theorem 2. For all positive integers n, m, not equal simultaneously to 1, we have three
inequalities

: nB(O)+n—1
per) = (m—1)B(©) +m’

o (=11 +p8(O) - 1-a(O)
pe7) = (m—1)(14+8(0)) + (1 —a(0))’

e (=114 BO)7) — (a(e) ! —
O 2 (=) T+ BO) ) + (@) -

133



3. Transference theorem

One of the strongest theorems describing Khintchine’s transference principle belongs to Mahler:
Theorem 5. If there are x € Z™,y € Z", such that
then there are x € 2", y € 7, such that
0<lyle <Y, |0y —x|x <V,
where
1 1
V=d-1)X"U")", V=d-1)(X""U")"", and d=n+m.

Our third result improves Theorem 5. Namely, we substitute the factor d — 1 by a smaller
factor tending to 1 as d — oo. In order to give the precise statement let us denote by BZL the
unit ball in the sup-norm in R, i.e. the cube

{x:(arl,...,xd)ERd‘\xi|<1, izl,...,d}

and set

1 d
Ad = 2d71\/EV01d,1 {X € Bgo ) ;[Bl = 0},

where voly_1(-) denotes the (d — 1)-dimensional Lebesgue measure.
It follows from Vaaler’s and Ball’s theorems that the volume of each (d — 1)-dimensional
central section of BL is bounded between 297! and 2%~'y/2. Hence

d/2 < A7' <V,

1
which implies that A, “™" — 1 as d — oco. The following Theorem improves Theorem 5:

Theorem 6. If there are x € Z™,y € Z", such that

0<[xle <X,  [Ox—ylx <,
then there are x € 2™, y € Z, such that

0<lyle <Y, [0y —x|x <V,

where

Y= AT (XU, V= AT (X
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Parameterized differential Galois theory.
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The talk is based on a common work with A.Ovchinnikov and H.Gillet.

It is known that symmetries of solution spaces of linear differential equations are algebraic
groups. Given a family of linear differential equations, one often obtains (non-linear) differential
equations with respect to parameters of the base on the matrix elements of the corresponding
fiber-wise groups of symmetries. This leads to parameterized differential Galois groups, which
are symmetries of solution spaces of linear differential equations with parameters that commute
with taking derivatives along the parameters. First they were defined and studied by M.Singer
and Ph.Cassidy in the case when the field of functions in parameters is differentially closed,
that is, any compatible system of differential equations has a solution in the field of functions
in parameters.

We discuss a recent approach to this based on Atiyah extensions and a differential version
of Tannakian categories. As an application we obtain that in a wide range of examples with
a non-differentially closed field of functions in parameters, parameterized differential Galois
groups and Galois correspondence still can be constructed.
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Multidimensional Gauss Reduction Theory for conjugacy
classes of SL(n,Z).
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Two matrices M; and M, in SL(n,Z) are conjugate if there exists a matrix X in SL(n,Z)
such that
M2 == XMlXil.

In our talk we study the following problem.
Problem. Describe the set of conjugacy classes in SL(n,Z).

One of the mostly common strategies to solve this kind of problems is to find complete
invariants to distinguish the classes, and further if possible to write normal form of conjugacy
classes. For instance, in the similar problem for SL(n, F') for an algebraically closed field F' one
have Jordan Normal Forms as a complete description of conjugacy classes. Jordan blocks form
a complete invariant in this case. If the field is not algebraically closed, the description is much
more complicated via Jordan-Chevalley decomposition.

A complete description of the set of conjugacy classes in SL(2,Z) is given by Gauss
Reduction Theory. It turns out that it is natural to consider several normal forms for a
conjugacy class but not necessarily only one. Recently we showed a geometric explanation
of Gauss Reduction Theory it terms of geometric continued fractions.

We extend this approach to the multidimensional case. We propose a geometric description of
conjugacy classes in terms of multidimensional continued fractions in the sense of Klein-Voronoi.
In the totally-real case such multidimensional continued fractions are unions of boundaries of
convex hulls of all integer point inside the cones defined by invariant hyperplanes of linear
operators with given matrices. These fractions introduced by F. Klein in 1895 for the totally
real case. A little later G. F. Voronoi made the first attempts to generalize the construction to
the rest cases.

We consider Hessenberg matrices as a multidimensional analog of reduced matrices in Gauss
Reduction Theory. Hessenberg matrices are matrices that vanish below the superdiagonal.
We introduce a natural notion of Hessenberg complexity for Hessenberg matrices, which is
a nonnegative integer function, and show that each conjugacy class of irreducible matrices has
only finite number of Hessenberg matrices with minimal complexity. They are all constructed
starting from the vertices of Klein-Voronoi’s continued fractions.

In three-dimensional case of operators with a couple of complex conjugate eigenvectors we
discover the following phenomenon: Hessenberg matrices distinguish corresponding conjugacy
classes asymptotically. Notice that similar statement is no longer true for the case of operators
with three real eigenvalues.
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Khintchine’s and Jarnik’s Diophantine results and their
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In 1926 A.Khintchine published his famous paper "Uber eine klasse linear Diophantine
Approximationen"where he find out the main phenomena of multi-dimensional linear
Diophantine approximations. This paper includes results on

e aproximations with lacunary secuences;

e existence of so-called "singular systems";

e transference principles.

General theory of multidimensional Diophantine appoximations was constructed by
A .Khintchine and V.Jarnik in 1920 - 1950. It happened that many results by A.Khintcine
and V.Jarnik were forgotten. I suppose to give a talk about some classical results and their
modern extensions and generalizations. Particulary I consider the following topics:

e theory of singular systems, especially existence extremely singular matrices;

e the phenomena of degenerate dimension of the best approximations;

e Diophantine exponents and Diophantine inequalities;

e irregularities of distribution and indefinity principles.

In 1982 W.Schmidt formulated several important unsolved problems in Diophantine
approximations. Some of them were solved recently. One of the most impressive results is a
solution of so-called "BADconjecture by D.Badziahin, A.Pollington and S.Velani. I intend to
speak about this wonderful result and its connection to the general theory of Diophantine
approximations.
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Picard groupoids and reciprocity laws on algebraic surface.
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In case of a projective algebraic curve there are famous reciprocity laws for residues of a
differential form and for the tame symbol of rational functions on the curve. The last reciprocity
law is also called the Weil reciprocity law. These reciprocity laws are also connected with the
Gauss quadratic reciprocity law and the class field theory when the curve is defined over a finite
field.

There is an intrinsic proof of the Weil reciprocity law. This proof is based on the fact that the
cohomology groups of coherent sheaves on an projective algebraic curve are finite-dimensional
vector spaces over the ground field. Such a proof was given by E. Arbarello, C. De Concini and
V.G. Kac and followed after the proof of reciprocity law for residues of differential forms given
by J. Tate.

For algebraic surfaces there are Parshin reciprocity laws for two-dimensional tame
symbols, [1]. These reciprocity laws are connected with two-dimensional class field theory.
We give a new proof of these reciprocity laws, which has an intrinsic nature and uses adelic
structures on an algebraic surface.

For this goal we construct a 2-category of torsors over arbitrary Picard groupoid. This 2-
category is a 2-Picard groupoid. For any group we define the notion of central extension of this
group by Picard groupoid. After that we define the analogue of commutator map and study his
properties in this central extension. The commutator map is defined for any three commuting
elements of the group. When we apply these constructions to two-dimensional local fields, we
will obtain the new expression for two-dimensional tame symbol, which leads to the new proof
of Parshin reciprocity laws on an algebraic surface in the spirit of proof of Arbarello, De Concini
and Kac in case of an algebraic curve. We note that it was important for us to use non-strictly
commutative Picard groupoid of graded 1-dimensional vector spaces over a field.

If we change a ground field to an Artinian local ring in these constructions, then the
commutator map which was described above will give the other maps used by A.N. Parshin for
explicit construction of two-dimensional local class field theory. Using our method, we obtain
for these maps the reciprocity laws, which are the part of two-dimensional global class field
theory. In particularly, the reciprocity laws for residue of a 2-differential form on an algebraic
surface are also obtained.

This talk is based on joint results with Xinwen Zhu, [2].
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O nmoaxomgamninx ApodAX K IEIHBIM APOo0aM 0 OJImKaimiero
4eTHOIO.

Baamuvup [Mapycankos!

NIIM PAH, Poccus.
polar@list.ru

B pabore 1] uccienoBasmch cBoiicTBa menHbix Apobeii 10 GJuzKaiinero 4erHoro. Ajaropurm
PAa3JI0ZKEHUsI BEIECTBEHHOTO YUC/Ia (v B HUX MOM00EH aJITOPUTMY Pa3JI0KEHUsI B MPABUIBHYIO
MEeIHYI0 Apo0b, HO HA €ro Imare IpH OOpaIleHHH OCTATKA MEHSeTCS 3HAK, a BMECTO B3STHS
OmzKaiiero mejaoro oepercs OnzKaiilniee YeTHOE THCIO.

PannonanbHble 9uCTa, A1 KOTOPBIX CYMMAa HX IeJIOYNC/TeHHBIX IUCTUTES P i 3SHAMEHATE IS
¢ B HECOKDATUMOM IPEJICTABICHUH P/q YeTHA, HA30BEM HEHETMHbMU PAUUOHANDHMY YUCACLMU.
OcrajibHble pAIMOHAJIBHBIE YUC/Ia HA30BEM 4emHumu. lloaxoasimme 1podu K 9eTHOH IermHoit
JIpO0OU CYTh YeTHBIE PAIHOHATbHBIE THCIA.

B [2| 6bL1 mpesioxkeH yCKOpeHHBIH (KOPOTKWUit) BAPHAHT AJTOPUTMA DA3JIOKEHUS B 4YeT-
HYO IEIHY0 APOo0b: Pl MOBTOPSIIOIIMXC IAr0B 3aMEeHSICS KOMIIO3HIHEH COOTBETCTBYONIIX
JIpobHO-/TMHEHBIX npeobpa3oBanuii. C n-M MIaroM ajJropuTMa Terepb CBI3bIBAJIACH Hapa deT-

/
QLn / 1,n

HbIX pallMOHaJbHBIX Yucea — z2aaéhas ¢, — —— U JdOnoAHUMENDHAA q, = n

q2.n 2,n

dpobu K KOPOTKOiT deTHOil nenHoit apobu. Cunras gajee, 9T0 3HAMEHATEIN TOIXOISIIIX IPO-
Oeit B HECOKPATHUMOM IIPEJICTABJIEHUN HEOTPUIATEIbHbI, BKAIOYUM HOIXOJISIINEe Jpodu B OJHY
IocJae10BaTe IbHOCTD

noorodawa,

{40: 90+ @y @n s Lpirs Gt » - - - }- (13)

CupaseainBa

Teopema. B sasucumocmu om mozo, bydem nodxodswasn 0pobs K npasusvHot uennot dpo-
OU YUCAE O YEMHDLM UAU HEYEMHBM PAUUOHANOHOLM YUCAOM, OHG AUOO BCPEMUMCA 68 NOCAe-
dosamenvrocmu (13) daa a, 4ubo pasra omHuowenulo pasrocmet wuciumenetd u snamenamenet
cocednur nodxrodawur dpobeti moti nociedo8amesbHOCU.

JINTEPATYPA

1. Hapycruros B.H. Uenubie npobu no bumxkaitimero gernoro // JTAH, 2009, 1. 429, € 5, c.
590-594.

2. Iapycrukos B.HU. Uenubie npobu 1o Gamzkaiinrero vernoro. Koporkuii Bapuant // Tlpe-
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Discrete Complex Reflection Groups.
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Let k be either the field R of real numbers or the field C of complex numbers. Let V' be a
finite dimensional vector space over k endowed with a positive definite inner product ( , ). Let E
be an affine space over k with the space of translations V' and the metric structure determined

by ().

Definition 1. Definition An affine isometry v of E is called reflection if its order is finite and
the fixed point set E? is a hyperplane (i.e., codim; E7 = 1).

Definition 2. Definition A transformation group of E is called a reflection group of E if it is
discrete and generated by reflections.

The aim of this talk is to describe a complete classification of reflection groups I' of E.

If either £k = R or k£ = C and T is finite, such classifications are the well-known fundamental
classical results due to E. Cartan, Witt, Coxeter (for k£ = R), see |1], and Shephard and Todd
(for k = C), see [3]. Our contribution is the complete classification of infinite reflections groups
for k = C.

In fact, we obtain more: as a byproduct of our approach we obtain, for £k = C and every
finite reflection group W of V' (i.e., a group of Shephard and Todd), the complete classification
of W-invariant lattices T"in V. These lattices are quite remarkable. In particular, the complex
torus V/T is an abelian variety.

Our approach is also applicable for classifying reflection groups of affine spaces over
quaternions and classifying lattices invariant with respect to finite quaternionic reflection
groups. If time permits, I shall comment on this as well.
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Alternative algebras with hyperbolic unit loops !
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We investigate the structure of an alternative finite dimensional Q-algebra 2l subject to
the condition that for some Z-order I' C 2, the loop of units of U(I') does not contain a
free abelian subgroup of rank two. We also classify the RA-loops L for which ZL has this
property. The classification for group rings is still an open problem. This definition is an
extension of the notion of hyperbolic group defined by Gromov [2| via the Flat Plane Theorem
|1, Corollary 171.I'.3.10.(2)]. We also prove that if an alternative finite dimensional Q-algebra
has the hyperbolic property, then the radical of the algebra lies in its associator.

Group rings ZG whose unit groups U (ZG) are hyperbolic were characterized in [5] in case G
is polycyclic-by-finite. A similar question was considered for RG, R being the ring of algebraic
integers of K = Q(v/—d) and G a finite group (see [6]). In [3, 4], these results were extended
to associative algebras A of finite dimension over the rational numbers containing a Z-order
I' € A whose unit group U(I") is hyperbolic. An algebra A with this property is said to have
the hyperbolic property. Using these general results, the finite semigroups S and the field
K = Q(v/—d) such that KS has the hyperbolic property were classified.

In this talk, our approach is the same problem in the context of non-associative (Q-algebras,
in special those which are loop algebras.
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On a compactification of moduli of vector bundles by trees
of bubblings of the surface: arbitrary rank case.
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We construct a non-classical algebro-geometric compactification of the scheme of moduli of
Gieseker — stable vector bundles with fixed Hilbert polynomial on a smooth projective algebraic
surface (S, L) over the field k = k of zero characteristic. We consider the case of arbitrary rank.

Families of locally free sheaves on the surface S are completed by locally free sheaves of some
special type, on schemes which are certain modifications of S. This may be done by taking the
modifications to be smooth irreducible surfaces obtained by so-called trees of bubblings of the
surface S.

Gauge-theoretical approach to this project was provided for £ = C by Nicholas Buchdahl
[1, 2]. In his version the bubbling of the compact complex surface .S at its point z means forming

a (real) topological connected sum with projective plane SJ:@2 equipped with a suitable metric.
The attachment is done so as the neck of the connected sum circles the point . Bubblings can
be iterated. The process of consequent bubblings is described by consequent choice of points x
and then can be displayed by the union of graphs of tree type.

We provide the algebro-geometric approach to what was done by N. Buchdahl. The role of
bubbling is played by blowing up of reduced point on the surface S and the role of metric in the
construction is played by ample divisor class. We prove that any stable rank r coherent sheaf F
can be transformed in the certain procedure into the locally free sheaf E on the another surface
S. This surface is obtained from S by the tree of bubblings which depends on the initial sheaf
E. Tt is clear that this tree of bubblings is defined not uniquely. We describe the class of vector
bundles to appear in the construction and propose moduli functor for pairs ((S, L), E). Such
pair consists of bubble-tree-blown up surface S with distinguished ample line bundle L and of
locally free sheaf E of the class described. Coarse moduli space for this functor is a projective
algebraic scheme. It is birational to Gieseker — Maruyama scheme.
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IEeJIOUYNCJEHHBIX pelleTKax.

Atekceit YecTuHOB

Xabaposckoe otnenenne Nacruryra npukiagaoii maremaruku /IBO PAH, Poccus.
ustinov@iam.khv.ru

[IpuBeiennbie 6A3UCHl PEMIETOK MCIIOJIB3YIOTCS P PeaJu3allii U aHAJIU3€e PA3JIUIHbIX Bbl-
YUCJIUTEJIbHBIX aJITOPUTMOB (6bICTpO€ YMHO2KEHHE TOYEK Ha IJIJIMIITUICCKUX KPHUBBIX, IIPEACKa-
3aHUe MOBEJICHUS TCEBIOCTYyUAlHbIX MOCIeI0BATeIbHOCTEH U T. J.). IIpr 3TOM CI0XKHOCTH U
BpeMsl pabOThI aJrOPUTMa 3aBUCAT OT CBOWCTB MPHUBEIECHHOIO OA3UCA.

B ByMepHOM cJIydae pacipejiesieHne BeKTOPOB IPUBEIEHHbBIX (B PA3IMIHBIX HOpMAX) Oa3u-
COB MOZKHO OIUCATH siIBHO. B 4acTHOCTH, MOYKHO HAUTH IJIOTHOCTD PACIPE/Ie/IeHUs KPaTIaiIimX
BEKTOPOB B JIBYMEPHBIX HEJIOYUCJICHHBIX DeEIleTKaX U IIJIOTHOCTb pacClipedesieHud JJIMHbI BTOPO-
ro 6a3UCHOI'0 BEKTOpA.

PesynbraT ocHOBaH Ha HNpUMEHEHHUH TeOMETPHYECKOIl TEeOpHH MEIHBLIX Jpodeil W OIeHKax
cymm Kiocrepmana. OH TecHO cBs3aH ¢ noBejeHneM 4dnces; PpodbeHmyca oT Tpex apryMeHTOB.
Jl1s1 KOTOPBIX HEIABHO OBLIM JIOKA3aHbl TUIOTE3bl J[3iiBucoHa n ApPHOJIbIA, KOTOPbIE TaK¥kKe
Oy/lyT 3aTPOHYTHI B JTOKJIAJIE.

Pabora BeImosiHena mpu mojjepxkke rpanta Ilpesmmenta PO No MJ/1-2339.2010.1, donga
“Nunactusa”’, douga PODPU, rpanter No 09-01-12129 odwu-m, 10-01-98001-p-cubupb-a, 09-01-
00371-a, mpoekTta JIBO No 09-1-114-03
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Section “Applications”

Extended Strings: comparison of topological defects and
solitons.

Igor Bogolubsky

Joint Institute of Nuclear Research, Dubna.
bogolubs@jinr.ru

Presently there exist growing interest to extended strings as simplest examples of (D-1)-
dimensional nonlinear field solutions which could play crucial role in modern superstring theories
as fundamental degrees of freedom. Well-known extended solutions with nontrivial topology
belongs to the wide class of so-called topological defects (TD’s). Topological indices of TDVs
can be calculated from their field distributions at D-dimensional outer boundary; the examples
of this kind are: 2D Abrikosov-Nielsen-Olesen (ANO) strings-vortices and 3D Polyakov-"t-Hooft
hedgehogs-monopoles. An alternative possibility is to consider topological solitons (TS’s), which
are found for uniform boundary conditions (contrary to TD’s) at outer (space) boundary. Their
topological indices are defined by the whole solution; the well-known example of such topological
solitons are 2D Belavin-Polyakov solutions and 3D Skyrme hedgehogs.

The original part of the talk is planned to be the presentation of TS-analog of the ANO
TD’s, namely soliton strings-vortices in Ythe A3M modelY (the gauge-invariant nonlinear sigma
model of the Heisenberg antiferromagnet with the "easy-axis"anisotropy, in which 3-component
scalar unit isovector field interacts minimally with the Maxwell field). This A3M model possesses
both Z(2) global symmetry and U(1) local symmetry which could be underlying reasons of the
surprising and physically appealing properties of stable 2D A3M topological solitons, which are
planned to be compared in the presentation - both with Belavin-Polyakov solutions, on one
hand, and with the ANO topological defects, on the other hand.

Finally search for classically stable 3D topological solitons in realistic Quantum Field
Theories (QFTs) will be shortly discussed, in particular for 3D topological solitons in bosonic
sector of Weinberg-Salam theory of electroweak interactions.

144



Power geometry as new mathematics.

Alexander Bruno

Keldysh Institute of Applied Mathematics, Moscow.
abruno@keldysh.ru

Traditional differential calculus is effective for linear and quasilinear problems. It is less
effective for essentially nonlinear problems. A linear problem is the first approximation to a
quasilinear problem. The linear problem is usually solved by methods of Functional Analysis,
then the solution to the quasilinear problem is found as a perturbation of the solution to the
linear problem. For an essentially nonlinear problem, we need to isolate its first approximations,
to find their solutions, and to construct perturbations of these solutions. This is what Power
Geometry (PG) is aimed at. For equations and systems of equations (algebraic, ordinary
differential, and partial differential), PG allows to compute asymptotic forms of solutions as
well as asymptotic and local expansions of solutions at infinity or at any singularity of the
equation (including boundary layers and singular perturbations) [1].

Algorithms of PG: (i) isolation of first approximations of the equations (via its polyhedron);
(ii) simplification of the first approximations by power and logarithmic transformations; (iii)
solution of the simplified equations; (iv) computation of expansions of solutions via successive
linear first approximations [2].

Applications of PG: 1. Expansions of solutions to ODEs. 2. The same for Painleve equations.
3. Periodic solutions to the Beletsky equation (oscullations of a satellite). 4. Motion of the rigid
body. 5. The boundary layer on a needle. 6. The restricted 3-body problem. 7. Integrability. 8.
Evolution of turbulent flow.

Some references

1. A.D. Bruno. Power Geometry in Algebraic and Differential Equations. Fizmatlit, Moscow,
1998, 288 p. (Russian) = Elsevier Science, Amsterdam, 2000, 385 p. (English)

2. A.D. Bruno. Asymptotics and expansions of solutions to an ordinary differential equation
// Uspekhi Matem. Nauk 59:3 (2004) 31-80 (R) = Russian Mathem. Surveys 59:3 (2004) 429-
480 (E)

145



Delone-Hopf Triangulations in a 3-Sphere.

Nikolai Dolbilin

Steklov Mathematical Institute, Moscow.
dolbilin@mi.ras.ru

Masaharu Tanemura

Institute of Statistical Mathematics, Japan.
tanemura@ism.ac. jp

Let X C S® C E* be a finite point set on a standard 3-sphere and Del(X) a corresponding
Delone triangulation Del(X) of the sphere S3. It is well-known that in this case Del(X) is
isomorphic to the boundary d(conv(X)) of the convex hull conv(X). Namely, Del(X) coincides
with the central projection of d(conv(X)) onto S3.

We call a Delone triangulation Del(X) a Delone-Hopf triangulation if the point set X
belongs to the Hopf-Clifford torus T C S, i.e. to the torus T := {(cos ¢, sin ¢, cos 1, sin 1)), | 0 <
@, 1 < 2m}. We study Delone-Hopf triangulations for sets X C T of two sorts.

We present two main results. One is a very nice explicit description of a Delone-Hopf
triangulation Del(X) when a point set X is a "periodic"set. The description is given in terms
of the Klein polygon for lattices of rank 2. It uses geometry of continued fractions and based
on uneasy calculations and non-trivial geometric arguments.

Another main result is computing a Delone-Hopf triangulation Del(X) for a random set
X € T, ie. when X is a point Poisson process on the Hopf torus. The computer simulation
of Del(X) in this case gives a surprising phenomenon: the mean valency of vertices in Del(X)
grows logarithmically as the cardinality N := |X| tends to infinity.

This empirical result looks even more surprisingly because it contrasts to that in a Delone
triangulation for X, where X is a random set on the whole 3-sphere, the valency of a
"typical"vertex * € X tends to the Meijering constant 487%/35 + 2(= 15.53...). Thus, in a
random 4-polytope provided all its N vertices are randomly located on the Hopf torus there
are O(N log N) edges, in contrast to O(N) edges in Del(X) if X is a point-Poisson process on
the sphere S3.
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The Combinatorial, Contraction, and Affine Types of
Parallelohedra.

Peter Engel

University of Berne, Switzerland.
pengel@bluewin.ch

The present state of the theory on Fedorov’s parallelohedra is presented. New results are
given on the enumeration of combinatorial, and affine types of primitive parallelohedra.

Let A? be a translation lattice in Euclidean space E¢ with Gram matrix Q. We denote the
Dirichlet parallelohedron by

P(Q):={x¢ FE | x'Qx < (x —t)'Q(x —t),Vt € Ad}.

It is a special kind of a Fedorov parallelohedron.

The k-faces of a polytope P, are partially ordered with respect to inclusion. The k-faces of
P, together with the empty set {(}}, determine the face lattice L(P).

Definition 1. Two polytopes P and P’ are combinatorially equivalent, P' <™ P and belong to
the same combinatorial type, if there exists a combinatorial isomorphism T : L(P) — L(P’).

A zone of P is a set of parallel 1-faces of P. A zone Z is called closed if every 2-face of P
contains either two edges of Z, or else none. Otherwise Z is called open. The edges of a zone
Z are collected into subsets SJZ-, Jj=1,...,s(Z) according to their length 1;,; <l < --- < lyz).
Each subset contains a multiple of 2d edges. By zone contraction P*, we understand the process
of contracting every edge of a closed zone Z by the amount of its shortest edges S% [3]. A
parallelohedron P, is said to be totally contracted if all its zones are open. A parallelohedron
P, is mazimal if it cannot be obtained by a zone contraction of any other parallelohedron. The
zone extension PT is the inverse operation of zone contraction.

Each maximal parallelohedron defines a complete zone-contraction lattice Z(P,,) by
contracting all combinations of closed zones. Each relatively, or totally zone-contracted
parallelohedron P, defines a zone-contraction family Z(P.).

Definition 2. Two parallelohedra P and P’ are contraction equivalent,P’ ©™" P and belong to
the samecontraction type, if

i) there exists a face lattice isomorphism k : Z(P) — Z(P’);

ii) there exists a combinatorial isomorphism for each Pec Z(P), k: PP comb P.

In dimensions d < 5, both classifications coincide.

Still a finer classification of parallelohedra is given by affine equivalence. Let A = {a;;} be
a non-singular d x d matrix with real coefficints a;;.

Definition 3. Two polytopes P and P' are affinely equivalent, P’ off P, and belong to the same
affine type, if there exists an affine mapping A : P' = AP.

Vorono™ i [7] conjectured that every parallelohedron is affinely equivalent to a Dirichlet
parallelohedron, and he proved it for primitive parallelohedra.

We shall partition the open cone of positive definit quadratic forms C*, into connected open
subcones of equivalent types of parallelohedra

T(P)={Q eCT|P(Q) ~ P}.

For the determination of the equivalence of two parallelohedra we note that all P(Q)) within
a subcone of combinatorial type have identical face lattices. This allow us to construct relative
equivalence schemes. For combinatorial equivalence, the boundary of a subcone is give by the
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condition that at least d + 1 facets meet in the common vertex v C P. By writing down for
each facet the numbers of all subordinated vertices in increasing order, we obtain the relative
polytope scheme to characterize the combinatorial type. For contraction, and affine equivalence,
additional boundaries of the corresponding subcone are given by the condition that for a zone
Z at least two subsets SZ, and S# have equal length, I;, = [;.. By comparing for each zone Z; the
lengths of each subset Si‘ with each other Si‘ we obtain a sequence of comparison operators
<, =, >, which determines the relative affine scheme. It holds that ®@,¢r C Proptr S Promp

We designed algorithms to determine the various kinds of subcones. To sum up the results
of Fedorov [5], Delone [1], Shtogrin [6], and ours [2]|, [3], [4], we obtain:
Theorem. In E?, there exist 2 combinatorial types of parallelogons, and in E3, there exist 5
combinatorial types of parallelohedra. In E*, there exist 52 combinatorial types of paralllelohedra
which belong to 2 zone-contraction families. In E°, there exist 179’372 contraction types
of parallelohedra which belong to 82 zone-contraction families. They belong to 1037769
combinatorial types.

Previous results in E® show that there exist much more than 198°000°000 combinatorial
types of primitive parallelohedra. We started to calculate subcones of affine types which, in
some cases, prove to have a very complicated combinatorial structure.
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3D reconstructions of synaptic structures of central
neurous system using Delaunay partitionings'.

Vladimir Garanzha

Computing Center RAS, Moscow.
garan@ccas.ru

Reliable 3d reconstruction of synaptic structures of CNS using high resolution electron
microscopy data is hard unsolved problem of modern biophysics and numerical geometry. State
of the art technologies allow to obtain sections of the brain tissue with thickness up to 10
nanometers, while spatial resolution for each slice (pixel size) can be as small as 2 nm. This
resolution allows to view directly synapses or so-called postsynaptic densities (PSD) which
serve as a basic recognition patterns of a contact between axon and dendrite. Most PSD are
located at special dendritic structures called dendritic spines. Manual detection and marking
of PSD and dendritic spines on EM images is very time consuming and requires high level of
expertise in neurobiology. Contours on the images still have to be detected manually. Fig. 3
shows such sample image. Analysis, classification, geometrical and topological description of
dendritic spines and PSDs is recognized as a powerful tool for investigation of the mechanisms
of memory [1].

“‘J |
1 O 20\\‘.ﬁ3

Fig. 3. Electron microscopy image of Fig. 4. Reconstruction of dendrite
brain tissue sections, color marks from cross sections with simultaneous
dendritic spines. aligment of contours, multiple

dendritic spines are clearly visible.
Fig. 5. Direct comparison of reconstruction results: left - Trace algorithm, right - suggested algorithm.
In order to reconstruct surfaces from contours on two consecutive cross sections we use
constrained planar Delaunay triangulation for a set of flat contours. Resulting triangulation is

mapped into 3d space forming membrane-like surface spanning spatial contours [2]. Nice feature
of this algorithm is that it allows to avoid topological errors when reconstructing branched

LThis is a joint work with A.I. Fedotov (Moscow Institute of Physics and Technology), L.N. Kudryavtseva
(Moscow Institute of Physics and Technology), I. Patrushev (Institute of Cell Biophysics RAS, Puschino), R.V.
Polozov (Institute of Theoretical and Experimental Biophysics RAS, Puschino), V.I. Popov (Institute of Cell
Biophysics RAS, Puschino).
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configurations. Consecutive EM images can contain alignment uncertainty. In order to resolve
it local alignment for all pairs of sections is applied which generally result in jagged surfaces
shown in fig.4, left. To resolve this problem we construct transformations of section contours
via discrete curvature functionals minimization for selected objects spanning geometrical scene.
Such ”"smoothing“ is illustrated in fig.4, center-right. As a basis set of objects one generally
chooses a subset of mitohondria and axons.

Currently neurobiologists use algorithm "Trace® [3| for image alignment and recostruction.
It is well known that this algorithm is prone to geometrical and topological errors. Comparison
with suggested algorithm is illustrated on Fig. 5

Fig. 6 illustrates complexity of the problem. Preparation of data for geometrical scene
containing fragment of neural network with several dendrites, axons and astrocites and hundreds

of PSDs took several months. ) ) )
Next step in our research should be computation of geodesic

distance matrices between different PSD providing rough
estimates for signal traveling times as well as construction
of 3d computational meshes for such scenes which is the
prerequisite for numerical simulation of signal transmission,
spill-over and diffusion of neuromediators. This meshing
problem is quite hard and requires new versions of existing
meshing algorithms.

In order to attain reliable reconstruction of the surface
features and estimation of discrete curvatures we develop
duality-based method which reconstructs simultaneously a
pair of locally polar polyhedra [4]. Fragments are shown in
fig. 7. One should note that construction of dual polyhedra is
quite hard problem which implies simultaneous optimization
of primal polyhedron and its iterative decomposition into
convex and saddle subdomains.

Fig. 6. Fragment of
reconstructed brain tissue:

dendrites, axons and astrocites.

Fig. 7. Dual polyhedral approximants for

Fig. 8. Nonunique solution of reconstruction
convex and saddle surfaces.

problem.
In order to construct 3d meshes we have developed special variant of Delaunay partitioning

technique in implicit domains defined by non-smooth implicit function. This technique allows for
automatic sharpening of boundary edges without their explicit detection. It allows to construct
3d meshes directly from the set of cross sections and in general from combination of analytical
definition with a “soup” of points, segments and faces. Fig. 8 illustrates how this technique does
the task of simultaneous meshing and reconstruction. The set of sections assumes the presence
of oblique cut, however both implicit function reconstruction and 2.5d Delaunay triangulation
based reconstruction result in multiple bridges/tunnels. In order to resolve this problem we have
developed a preliminary version of reconstructor based on special control vector fields partially
aligned with oblique cuts, see fig. 8, right. However formalization of biological requirements for
reconstruction still provides considerable difficulties. This work is partially supported by REFBR
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O reomerpun cucreMbl TO4eK Jlesone- AJjiekcaHapoBa.

Alexey Gurin

B.Verkin Institute for Low Temperature Physics and Engineering, Ukraine.
alexgul0l@ya.ru

Unrepecyromast Hac cucrema Touek JlesioHe-AjiekcanaIpoBa CyTh CHCTEMa I[EHTPOB PaB-
HBIX 11apoB, oOpasyomux ynakoBky. [losromy 3ajaua Kemiepa, Haxox ieHus IJIOTHeHIeHR
YHAKOBKHM PaBHBIX IAPOB, UMEET aHaJOrHYHYI0 (DOPMYJIUPOBKY Jjisd cucrembl Touek /[lesone-
Anexcanaposa. UaTpepec K mpobiteme Keriepa YKpemuics mocje BKIIOUYEHUs ee B YUCT0 BakK-
meiimux mpobsem .I'manbeprom. Pemenne mpobiembr Kemmepa, mazke mocse IOsIBUBIIHXCS
nyOJIMKaIUii, peTeH/YIONMX Ha UCUYepPIbIBalolee peiienue npob/ieMbl, OCTAeThC TPY/IHON 3a-
Jladei, TaK KaK M3y4eHUe IJIOTHBIX YIAKOBOK HE JIaJI0 HOBOI'O BBIBOJA O IJIOTHBIX YIIAKOBKAX,
kpome BbiBojia Kerepa. [Liorneitmas ynakoska Kernjepa, ussecrnas ceifuac Kak rpaHeneHTpy-
pOBaHHAS IJIOTHeHIas yIAKOBKA PABHBIX MIAPOB, OJHO3HAYHO XapaKTepHU3yeTcs CBOeil eiH-
cTBeHHOIT obsacTbio Boponoro m naBymsa mommsapamu lemone. Mbl mpejnmaraeM 00OOIIEHHBI
aaroputm Kokcerepa HapyIlieHns mOpsIKa PAaCIOJIOKeHHs TOYeK MO CIOCO0y TpaHereHTPHpPO-
BAHHOI'0 KyOm4eckoro Kpucra/uia. J[aHHbI ajropuTM reHepupyer roMOJIOTMYEeCKHl psiji I10-
YITH TIePUOANIECKUX (TI0YTH KPHCTALIOrpadHIecKnX) crocoboB PaCcIogoKeHus: Touek Jlesone-
AnekcanpoBa B TpeXMepHOM €BKJIMIOBOM MpocTpaHcTse. [Ipu mMamoM mapamerpe ajaropurma
Kokcerepa Haiien mosHeiil ciimcor myctor /lenone n obacreit Boponoro moenu.
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The estimation of gradient approximation on Delaunay
triangulation.

Vladimir Klaychin
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1. Desingate the convex hull of £ + 1 points p;,2 = 0, ..., k < n such as vectors p; — pg, p2 —
Do, ---, P — Po are linearly independent as k-dimensional simplex S in R".

Suppose D C R™ n > 1 is a domain, which has a defined sequence {P,,} of finite sets
of points. Let’s examine the triangulation 7,, for each of these sets. We mean the set {S} of
n-dimensional simplexes S as the triangulation of set of points, such as:

1) Each point p; € P, of the defined set is a vertex of one of the simplexes S;

2) Each vertex of any simplex S is one of the points {p;} € P,,;

3) Interiority of intersection of any two simplexes is empty;

4) There is the only one simplex S, which satisfies the conditions 1) — 3).

The triangulation of points set is the Delaunay triangulation (see [1], |2]), if the circumsphere
of each simplex of triangulation contains none of points of this set.

Let’s call the triangulation as acute, if all of its angles between any pair of its adjacent
k-dimensional faces are acute for each simplex.

It’s easy to verify, that any acute triangulation is the Delaunay triangulation.

For each simplex S € T, let’s define the length of its maximum side dg. Let’s assume

dp = ds.
We’ll examine such sets of points P, and their triangulations 7,,,, which satisfy the following
conditions:
dy, = 0 when m — oo. (14)

Ve > 03mg € N :Vm > mgy and Vo € D Ja € P, such that |a —z| <e. (15)

The second condition means that P, is an e-net for all sufficiently great m. Let’s examine
a function f(x),z € D belonging to the class C'(D). For the defined triangulation 7" in the
domain D let’s build up a piecewise affine function fr(z) such that

fr(a) = f(a), for any vertex a of triangulation T

It’s easy to prove, that when the conditions (14) and (15) are satisfied, the sequence fr(z)
converge uniformly to function f(z) on every compact subset U C D. This paper studies the
possibilities of the Delaunay triangulation for the approximation of the gradient of the function
f(z) by the gradient of fr(z) and also investigates admissible generalizations.

2. The following theorem gives a quantitative characteristic of the approximation property
of the Delaunay triangulation. It is necessary to note, that the properties (14) and (15) of
triangulations 7;, are not enough to get such estimates. This fact is demonstrated by the
classical Schwartz’s example (see [3]), where the square of the side surface of quadric cylinder
is calculated. We proved the following result:
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Theorem 1. Suppose the Delaunay triangulation T of some c-net of plain domain D C R?
is defined, which satisfies the condition (15). Then for any compactly embedded subset U CC D
the following estimate is correct:

0 f(x)
c%ci@xj

(44 5V2)e.

— <
sy B V) = Virol < e,

In case n = 3 an analogical result can be obtained only for much stricter triangulation class
than the Delaunay triangulation. There is the

Theorem 2. Suppose T is an acute triangulation of some e-net in the domain D C R3,
which satisfies the condition (15). Then for a function f(x) € C*(D),z € D and for a compactly
embedded subset U CC D the following estimate is correct:

0 f(x)
3a:i337j

(3+9V3)e.

sup sup|Vf(z) — Vfr(r)| < max max
SeT,éPCUxegy f( ) fT( )‘ U 1< <3
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Adiabatic limits and problems of distribution of integer
points!
Yuri Kordyukov

Institute of Mathematics RAS, Ufa.
ykordyukov@yahoo.com
1. Adiabatic limits. Let (M, F) be a closed foliated manifold equipped with a Riemannian
metric g. So we have a decomposition of the tangent bundle T'M of M into a direct sum
TM = TF®TF*, where TF is the tangent bundle of F and T'F* is the orthogonal complement
of TF. Accordingly, the metric g can be written as a g = gr + gp of the tangential component
gr and the transversal component gy. Define a one-parameter family g. of Riemannian metrics
on M by the formula
g- = gr+¢ gy, €>0.

For any £ > 0, consider the Laplace-Beltrami operator A, on M determined by g.. Its spectrum
is a countable set of eigenvalues with finite multiplicity 0 < Ag(e) < Ai(e) < ... such that
Aj(e) = 400 when j — oco. Let us define the eigenvalue distribution function of A, by

N.(\) = #{i: () <A}, A€R.

In the case when F is a Riemannian foliation and ¢ is a bundle-like metric, we proved an
asymptotic formula for N.(\) when ¢ — 0 (see [1]).
Following Witten, the limit ¢ — 0 is called adiabatic limit.

2. Distribution of integer points. Let F' be a p-dimensional linear subspace of R™ and
H = F* the orthogonal complement of F' with respect to the standard Euclidean metric in R™.
For any € > 0, we define a linear transformation 7, : R* — R" by the formula

T.() x, if v € F|
e\x) = .
elz, ifxeH

For any bounded domain S in R", denote
ne(S) = #(I(S)NZ"), €>0.

We are interested in the asymptotic behavior of n.(S) when ¢ — 0.

3. Relation with adiabatic limits. The problems mentioned above are related as follows.
As above, let F' be a p-dimensional linear subspace of R™. Consider the n-dimensional torus
T™ = R™/Z™ and the linear foliation F on T" determined by F": the leaf L, of F through x € T"
has the form
L,=x+F modZ".

Let g be the standard flat metric on T", and let g. be the family of Riemannian metrics on T",
which determines the adiabatic limit.

Denote by B,.(0) the ball in R"™ of radius r centered at the origin. For any A > 0, the
number n. (B, /5(0)) of integer points in the ellipsoid 7. (B, /5(0)) is related with the eigenvalue
distribution function N.(\) of the Laplace-Beltrami operator A, associated with g. by the
formula

n-(B5(0)) = N.(47%)).

!Supported by the Russian Foundation of Basic Research (grant no. 09-01-00389)
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In particular, the general results on adiabatic limits for Riemannian foliations mentioned above
imply an asymptotic formula for n.(S) as € — 0 in the case when S = B (0).

4. The results. First, we prove an asymptotic formula for n.(S) when ¢ — 0 in the
case when S is an arbitrary bounded domain in R"™ with smooth boundary. Next, under
some additional assumptions on S, we state a refined remainder estimate in the asymptotic
formula for n.(.S). Finally, using these results, we obtain more precise remainder estimates in
the asymptotic formula for the eigenvalue distribution function N.(\) of the Laplace-Beltrami
operator A, in adiabatic limit for the particular case of the linear foliation on the torus.

This is joint work with A.A. Yakovlev (see [2]).
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MmuorocJaoitHag Mmoaesb B ontuke. HoBble aHaanTnmieckue
pe3yJibTaThl.
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OsHoft W3 KJIACCUYECKUX 331249 ONTHKH SIBJISIETCS] aHAJM3 PACIPOCTPAHEHUsI CBETA B CJIO-
ucroii cpejie [1]. Mbr paccMOTpUM IUIOCKHIT BOJHOBOJL, TIPEJICTABIISIONIHI 000l COBOKYITHOCTD
m > 2 cJI0YB JU3TeKTPUKOB C IIOKa3aTeadMu IpeiomieHud nj, 1 < j < m. [lycTs B Kpaiinux
CJI0IX OECKOHEYHON TOJIMUHBL 1 > N,,. A Cpean BHYTPEHHHX CJIOYB MMeeTCs CJIOi C IOKa3a-
TesieM mpesomienns 6osbimmm 1. Kak ussectro [1, 2|, cyimectByer aBa THIIA 3JEKTPOMAIHUT-
HbIX BOJIH B BosiHOBOJE: TE- u TM-Bosabl. Ecin cunrarh ciaoun nepresaukyasapabivu ocu O,
a BOJIHBI PACIIPOCTPAHSIOMUMECS B0Jb ocu (Jz, TO B j-OM CJIO€ ypaBHEHUE JIsi — aMILIATY-
Ibl cocTaBisonmeit £, (1) BEKTOpa 3IeKTPHIeCKON HAIPSKIHHOCTH rapMonmdeckoii TE-potmbr
3amuceiBaeTcs [2| tak

A d’E,
w? dx?
riae § — sbdexTuBHbIi MoKa3aTe b NPeJOMIIEHHs BOJTHOBOAA (OCTOSIHHAS PACIPOCTPAHEHNUST
BOJIHBI), W — 9YaCTOTAa BOJIHBI, ¢ — CKOPOCTh CBeTa B BaKyyMme. B KaK/oM cJioe pereHue 91o-
ro ypaBHeHHUs e€CTh JIMOO JUHelHass KOMOWHAIMS CHHYCOUIbI M KOCHUHYCOMJIBI, JTUOO JTUHEHHAS

KOM6I/IHaIlI/I$[ ABYX 9KCIIOHEHT B 3aBUCHMOCTH OT 3HaKa BEJIMINHDbI BQ —Tbg Ha I'PaHUYIHBIX ILJIOC-

dE
KOCTAX CJI0YB Pellenns CIUBAIOTCA 10 yCIOBUSAM HEIPEePBIBHOCTH BeJandnn [, n —*. Ecan npn

HEKOTOPOM 3Ha4YeHuu 3 MOJIydaeTcsl pereHne, y KOTOporo B KpaifHux 6eCKOHe‘{HbIC§f CJIOSIX TIOJIe
9KCIIOHEHIMAILHO yOBIBaeT Ha OECKOHEYHOCTH, TO 9TO 3HAUEHUE IMOCTOSHHON paciIpocTpaHeHHs
[ Ha3bIBaeTCa COOCTBEHHBIM, a COOTBETCTBYIOIee pelneHne — cobcrBennoit TE-momoit BostHO-
Boja. Haxox ierune coOCTBEHHBIX MO/, SIBJIA€TCS OJHOM M3 OCHOBHBIX 33/[a4 TEOPHH BOJTHOBOJIOB.

I13BecTHbIe ypaBHEHUsI JJIsi HAXOXK/IEHHsT CODCTBEHHBIX 3HaYeHUi [ (MX HA3BIBAIOT JHCIIED-
CHOHHBIMH) € TPYJOM HOJJIAIOTCS aHAJU3Y U PEHICHHIO NP YHCJe CJI0YB BOJIHOBO/A OOJIbIIEM
qeTblpuX. [losToMy ObLIH pa3BUTHI BecbMa 3(M@EKTUBHBIE YHC/JICHHBbIE METOJbI pelIeHus 3a-
naan. OaHAaKO, YHCJIEHHBIE METOJbl He MOLYT JaTh Pe3y/JbTaTOB KAadeCTBEHHOTO XapaKTepa.
ABTOpoM ObLTa IpeToKeHa HOBasg (GopMa JUCIEPCHOHHOIO ypaBHEHHs, KOTOPYIO OH HAa3BaJl
MHOIOCJIONHBIM ypaBHeHueM |3, 4|. MHuorocsoiiHoe ypaBHeHue 006/1a1aeT PsIOM IPEHMYIIECTB
epeJi N3BECTHBIMU JUCIIEPCHOHHBIMI ypaBHeHHAMHU. C IIOMOIIBIO HECJIOKHO MPOrPpaMMBI, pe-
aJIN30BAHHOI Ha MEPCOHAJBLHOM KOMITHIOTEDE, er0 MOXKHO MH/IYKTUBHO BBIITUCHIBATH U PEIaTh
JIJIS BOJTHOBOJIOB, COJEPZKAIIUX, BO BCAKOM CJIydae, 0 JIBYX JIECITKOB CJIOYB.

B ormimume oT M3BECTHBIX JTUCIHEPCHOHHBIX YpaBHEHHII MHOTOCJIOHHOE ypaBHEHHE JOBOJIHBHO
JIETKO TIOJJIAYTCs MAaTeMaTHIeCKOMy anaau3y. [lyTam ero anaimsa aBropom ObLIN Oy YeHbl ||
TouHbie U dPdeKTuBHbIE (POPMYJIbI JJIsi YNCJIa COOCTBEHHBIX JIeKTpoMarHuTHbIX TE- u TM-
MO/ B IPOU3BOJIbHBIX TJIOCKUX JANIJIEKTPUIECKUX BOJHOBOAaX. [Ipuaym, sra 3a/1a4a cBejiach K
reoMeTpUYecKoil 3ajade IoJICYYTa MOBOPOTa rojorpada HEKOTOPOil BEKTOP-(PYHKIMH BOKPYT
Hava/1a KOOPJMHAT B ILTOCKOCTH. llogcadr ducia Mo /i1 BOJTHOBOJIOB, COJIEPKAINMUX JTeCSITKH
CJI0YB, C TOMOIILIO 3THX (OPMYJ HA HMEPCOHATBHOM KOMIBIOTEDPE ITPOUCXOIUT HPAKTUIECKH
MI'HOBEHHO.

13 nosryaennbix (pbopmys BeITeKaeT cie/ayolias reopema. [IlycTh mokasaresin mpeioMIeHust
CJIOYB Yepeysach IPUHUMAIOT JIBa 3HAUEHU: 17 < Mo, & TOJIIUHBI BHYTPEHHUX CJI0YB YePeIysiCh
HPUHUMAIOT 3HAYEHUS U U V.

+niE, = B’E,,
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TEOPEMA. Kaxoev, 6 Hu OblAu 8EAUMUHDL U, V, N < Mg , NPU HEOZDAHUYEHHOM DOCITLE
YUCAA CA0EE 80AH0600a wucro cobemeennox TE u TM-mo0 6 nem makotce Heo2paruvero pac-
mem.
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Tube method — An integral-geometric approach to
statistical distribution theory'.

Satoshi Kuriki
The Institute of Statistical Mathematics, Japan.
kuriki@ism.ac. jp

Let X (p), p € M, be a real-valued Gaussian random field defined on a finitely dimensional
index set M with mean 0 and variance 1. Consider approximating upper tail probability of the
maximum of X (p) over M,

P(c) = Pr (sup,c X (p) > ) . (1)
Here we restrict our attention to a class of random fields of the form

X(p)=(p,€), peMcS" (2)
where £ = (&1,...,&,) is a random vector consisting of independent standard Gaussian random

variables, and S?~! is the set of unit vectors in R?. This is a canonical presentation of Gaussian
fields with finite dimensional covariance functions. Although this is a restricted class of Gaussian
fields, this covers a wide range of distributions appearing in multivariate analysis.

The set of points in S¥! whose geodesic distance from M is less than or equal to @ is called
the tube around M with radius 6, and is denoted by Tube(M,8). Write d — 1 dimensional
volume of the tube as

V(0) = Volyg_1(Tube(M, 9)).

The relation between P(-) and V(+) is essentially the Laplace transform and its inversion. This
implies that the asymptotic behaviors of P(a) as a 1 co and V(0) as 6 | 0 are determined by
each other. The basic strategy of the tube method is to evaluate V' (6) for 6 small first, and
then to obtain P(c) for ¢ large by the Laplace transform.

If M is a piecewise-smooth submanifold of S*~!, then the volume V() can be evaluated by
means of integral-geometric approaches. In particular, when M is a closed Riemannan manifold,
the volume formula is described in terms of Weyl’s geometric quantities or Lipschitz-Killing
curvatures (Weyl’s tube formula) ([5]).

For the purpose of approximating the probability (1), another method referred to as Euler
characteristics heuristic (EC heuristic) is known. In this method, the expectation of Euler
characteristic of a excursion set, E [x{p € M | X(p) > c}], is used as an approximation to (1).
For the class of Gaussian fields (2), it can be proved that the EC heuristic is essentially the
same as the tube method by extending Morse’s theory ([1], [6]).

Let K C R? be the cone with the base set M. Then, M = K NS !, and max, X(p) V 0
is the length of orthogonal projection of & onto the cone K in R?. For various cones K that
are statistically interesting, the volume formula V' (#) and the upper probability F'(c) can be
obtained explicitly. The following are typical examples:

(i) K = {hi®hy | h; € S%~1}, where ® is the Kronecker product. The maximum max, X (p)
is stochastically equal to the square root of the largest eigenvalue of a d; x d; Wishart matrix
with dy degrees of freedom ([4]).

(ii) K = {(h ® hy — ha @ hy)/v/2 | H = (hy, hy) € Vau}, where Vo4 is a Stiefel manifold.
The maximum max, X (p) is stochastically equal to the largest singular value of d x d skew
symmetric Gaussian random matrix (|2]).

! Joint work with Akimichi Takemura (Univ. of Tokyo) and Naohiro Kato (Graduate Univ. for Advanced
Science).
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(iii) K = {h®" | h € S '}. The distribution of max, X (p) is equivalent to the limiting
distribution of the sample k-th cumulant ([4]).

(iv) Let z ~ Ny(u, I;). Based on the observation z, consider a statistical hypothesis testing
for a null hypothesis Hy : o = 0 against H; : u € K, where K is a cone in R%. Then, the null
distribution of the likelihood ratio test is the distribution of (max, X (p) V 0)%. The following
cones are interesting in this context:

K ={(u;) €RY| py <---< py} (simple order cone),
K={AcR™ | A>=0} (cone of positive semidefinite matrices, [3]),
K={(c) eR*| Y, cix’"t >0, Vo € [a,b]} (cone of positive polynomials).

The obtained formulas for the upper tail probability (1) are very accurate when c is
moderately large, at least, and are practical enough for the purpose of calculating p-values
in testing statistical hypotheses.
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About definition of singular transformation by
N.V. Efimov.

Alexander Lozhkin
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ABSTRACT. The base of informatics-linguistic interpretation of applied geometry is produced briefly.

An author of this article goes in precision of geometrical models in CAD/CAM. Points of
ellipses crossing is a need to compute for few of geometrical model of machine-building goods.
Let are two ellipses Ey =< x1,y1,a1,b1,01 > and Ey =< x93, Ys, as, ba, 0 >, when centers
of ellipse (z;,y;) € R x R, semiaxes and tilt angle a;,b;,¢; € R, j € {1,2}, p; € [-m, 7).
Ellipses may be representing in quadratic form c;2? 4+ 2d,zy + e;4° + n;x + kjy + ; = 0, when
¢, d;,ej,ni, ki, l; € R. The task comes to solving of equation of four powers. There equations
are finding with Descartes-Euler and Cardano-Tartaglia methods one after another. In most
cases the solutions are receive with complex component x; = r; +1is;, when r;,s; € R, j € Z*.
Sometimes a value of complex component s; congruent with r;. Therefore, an author wanted
to find a solution without complex number.

Method of transformations chain is existed in applied geometry. This method allows
breaking matrix of unrestricted linear transformation to sequence of name conversions. Chain of
transformations of ellipses cross point was founded. One of transformation is shear conversion.

Classic method of finding of transformation parameters of quadratic form obtain coefficients
k., and k, in proper basis [1]. Basis depend on proper angle of quadratic form «. The parameters

01
is not have a proper basis. Definition of transformations chain is not possible by classic means.
The research was moved in orthonormal basis for quadratic form with canonic equation.
The representation of ellipse was selected by parametric equations set. Canonic equation
of ellipse ﬁ—i + Z_z = 1 have parametric equations set "Ziggﬁf: . Author’s student was
alighted an approach to finding of parameters of arbitrary linear transformation of ellipse
by additional angle 8 [2, p. 50]. Method get parameters of transform ellipse by solution

Rk, f2(t),0) = aR(£.(t), B) + AR (f, (£), B)

’ ’ ’ , when R(f,¢) —

Rlk, £, (1), ) = gR(F,(1). 8) + bR(F, (), 5 )

is find in series: a, k, and k,. N.V. Efimov [1, p. 128] was quote that transformation < L1 )

of parametric equations set: {

rotation transformation.

Method is work the linear-independed transformations the singular conversions. Theoretical
foundation of this is next to Efimov definition of singular transformation. He writes [1, p. 94]:
singular transformation convert the plane to line. On this base was set a hypothesis of

preservation of permutation symmetry for any reflection on plane [2|. Next step

0 1
10
in our research is problem what contradict to store permutation symmetry. Cartesian product
is solved this issue from set theory and relational algebra. There foundations were resulted table
of binary symmetry of Euclidean plane.

Developing the Leibniz statement about special space relationships (automorphisms), H.
Weil proposed the table of symmetries [3|. The table is definite symmetries on plane and space.
The translational symmetry extract particularly. She was not included in the table.

Considering the axiomatics of Euclidian plane, Diuedonne [4] determines two types of the
symmetry: the symmetry (the permutation symmetry) and the mirror symmetry. Besides, he
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widely uses the identity transformation unitary matrix(the symmetry of existence). Treating
the relationships, caused by the automorphisms, Diuedonne inclines to the interpretation of
Bachmann-Yaglom symmetries as binary symmetries.

The notion of automorphism developed in the set theory. A. Fraenkel constructs the ZFC
axiomatics on the definition of automorphic relationship of set membership of element [5].
While, the principle of nonempty set existence (the existence symmetry) is indirectly presented
in this definition. The ZFC axiomatics doesn’t include any axioms, which determine the order
of set. Using the same objects, the Codd relational algebra, on the contrary, suggested the
existence of the order set before the determination of the set. This demand is determined by
the Codd second rule or by the first normal form of relational table. The relational algebra has
a lot of empiricisms. In spite of it, the thought of primacy of order and secondary of the set is
taken as a basic statement of new interpretation.

The table of the binary symmetries of the Euclidian plane is defined:

Existence from set theory (Zermelo) and geometry (Duedonne);

Set membership from set theory (A. Fraenkel);

Linguistic order from geometry (Descartes, Klein) and relational algebra (Codd);
Mathematical order from set theory (Cantor) and geometry (H. Weil);
Permutation from geometry (Gilbert, Duedonne);

. Mirror from geometry (Gilbert, Duedonne) and art (Vitruvius, Leonardo).

First two types of automorphism cover to the set theory and influence on practically all
geometric problems. Let’s go into detail on the 3rd and the 4th types of the symmetry. Let’s
consider the set Z. This set obeys to the symmetry of translation were the step (rythm) is equal
1. There is now step between numbers for the set R, but, nevertheless, there is the symmetry
of translation, because every number is more than previous and less than next number, as it
was showed by Cantor. Let’s consider the set of coordinates names in space: X, Y, Z, ... Every
name is unique, as every real number is unique. The order of sequence is accurately defined.
There is no rhythm as for real numbers as for the names of coordinates. The set of names makes
the symmetry of translation. For unification, let’s call this symmetry the symmetry of order.
Let’s call the order on numbers mathematical and the order of names — linguistic. Since, names
can be arbitrary (but unique), they may not form sets, but be enumerable by some means.

The order of sequence in table is strict. The chosen symmetry can not contradict the older
one. Thereby, the empty set is the only asymmetry; it contradicts the symmetry of existence.
Two theorems, defining the priority and interaction of the 4th and the 5th automorphisms are
proved; the hypothesis of the symmetries balance is preconceived.

The hypothesis of symmetries balance.

Any relation, refection, function, operation, operator, morphism, transformation on
FEuclidean plane is carrying out accordingly in order to execute permutation symmetry with
preservation of mathematical order symmetry.

Results of theoretical mathematics are use in table only. Additional semantics may be
produce for any parts of geometry from the informatics-linguistic interpretation. The definition
of canonic equation is gain a strong substantiation. Opposition between parabola and others
conic sections (according P.S. Alexandrov) is dismount. Some results were obtained in linear
transformations of complicated forms. Connection interpretation with theory or orthogonal
invariant allows to make this.

] O QU W
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Periodic packings of d-dimensional polycubes'.

Andrey Maleev?
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Consider some d-dimensional lattice L. A polycube is a finite union of elementary cells of L
with connected interior. Centers of elementary cells from polycube are called polycube points.
The packing of polycubes is called normal if all polycube points from the packing belong to L.
The polycubes packing is called periodic if its automorphism group contains some d-dimensional
lattice I'. If the fundamental domain of I' contains only single polycube we have a translation
polycube packing. Let £ be a packing density. If £ = 1 we have a polycube tiling.

A packing space [1] is the pair (L, w), where L is a lattice, and w is a function w : L —
{0,1,...n — 1} such that all sets w™'(i), ¢ = 0,1,...,n — 1 are equivalent by translation to
some sublattice I' C L. For any lattice point « € L w(z) is called the weight of this point. The
number n is called the order of packing space. It is obvious that n = [L : T'].

Theorem 1. Let P = {f;}1<i<, be d-dimensional polycube. Then the following conditions are
equivalent:
1) There ezists the polycube packing of P with packing density k = =

n

2) There ezists the packing space (L,w) of order n and vector xo such that weights of the
points {B; + xo b1<i<r are pairwise different.

Using this theorem we obtain the algorithm which generates all translation packings of a
given polycube with a given packing density. Let Cy(n) be a computational complexity of this
algorithm.

Theorem 2. In two-dimensional case we have

Cy(n) = O(n*Inlnn),

In d-dimensional case we have
Ca(n) = O(nly(n)),

where 14(n) is a number of sublattices of Z with the index n.

Note that the exact formula for I;(n) was obtained by B.N.Delone in [2].
Now let Ty(n) be a number of d-dimensional translation polycube tilings, where n is a
volume of polycube.

Theorem 3. There constants ¢y, co exist such that
012" S Tg(n) S 622, ™.

The theorem 1 can be generalized to finite sets of polycubes. Consider a finite sets of
polycubes {‘Pj}1§j§M7 where Pj = {Bij}lgigrj-

L This work was partially supported by RFBR, grants N’ 08-01-00326, 08-02-00576.
2This is a joint work with V.G.Rau and A.V.Shutov
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Theorem 4. The following conditions are equivalent:
1) There eists the polycube packing of the set {P;} with packing density k = &, R = Zf‘il r;
2) There exists the packing space (L, w) of order n and the set of the vectors {xo;}1<j<m
such that the points {B;; + ij}lgigrj71§j§M are pairwise different and have pairwise different

weights.

Using this theorem we obtain the algorithm which generates all translation packings of a
given set of polycube with a given packing density [3].

Every polycube packing can be associated with some d-tuple (cy, . .., cq) with 0 < ¢; < 29—1
for 1 < i < d. This d-tuple is called a packing code. We use this code to recognize packings
equivalent by some transformation from SO(d). We also use this coding to obtain an algorithm
for generation of all periodic polycube tilings with a given volume of fundamental domain and
a given number of polycubes.
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Abstract

In this paper I discuss some topics which have long interested me . These themes relate with
the following subjects:

1. Hecke surfaces and K- regular graphs.

2. Duality transformations for generalized Potts models.

Each of them relates with deep mathematical and physical theories and they have nothing
in common at the first sight. However, it become more evident in the last year that a deep
internal relations between all these problems exist. Especially interesting and mysterious is the
role of Hecke groups in this context.

From this point of view is interesting to study the so called McKay correspondence which
attached to any finite group K of SU(2) a certain graph which coincides with affine extensions
of Dynkin diagrams . Recently these results were extended by I[.Dolgachev to the cocompact
discrete subgroups v of SU(1,1). We consider McKay correspondence for Hecke groups and its
relations with two-dimensional conformal field theory.

The second problem which we discuss is the cluster behavior of zeros of the Chromatic
Polynomial on graphs.There exists so called "Beraha conjecture"

Conjecture 2. Let us consider a chromatic polynomial P,(q) for arbitrary large planar graph.
Then the real zeros of P,(q) cluster round limit points. These limit points are so called"Beraha
numbers"q = [2 cos(m/k)]?, k = 2,3..

This conjecture in general is still unproved. There is an interesting approach using quantum
groups (H.Saleur). I would like to outline another approach using Hecke graphs.In this case it
is necessary to consider the Caley graph generating by Hecke groups. The partition function of
Potts anti-ferromagnetic model determined on this graph reduces to the chromatic polynomials
with desire properties.
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Let S be a generic set of n points {py,...,p,} in R We denote by DT(S) the Delaunay
triangulation of the convex hull of S in R? with vertices in S. In [1,2,3] we defined several
functionals on the set of all triangulations of S achieving global minimum on DT(S). In this
paper we consider two more optimal functionals.

Delaunay triangulation is used in numerous number of applications. It is usually chosen over
other triangulations. A logical question may arise: why this triangulation is better than others?

Usually, the advantages of planar Delaunay triangulations are rationalized by the max-min
angle criterion [Sibson, 1978]. The sequence of triangle angles, sorted from sharpest to least
sharp, is lexicographically maximized over all such sequences constructed from triangulation of
S. In particular, the Delaunay triangulation of S C R? maximizes the minimum angle in any
triangle.

The “radius” functional is the mean of circumradii of triangles for planar triangulations [2].
Let t be a triangulation of S in the plane. Assume that each triangle A; of this triangulation
is related to the radius R; of its circumcircle. For every triangulation ¢ is defined the set of
circumradii {Ry, ..., Ry} of triangles A; € t. The functional p(t,a) := > R}, a > 0 attains its
minimum if and only if t is the Delaunay triangulation |2|.

The Delaunay triangulation maximizes the arithmetic mean inradius: The functional L(t) =
> r; attains its mazimum if and only if t is the Delaunay triangulation [Lambert, 1994].

For a polygon P its harmonic index hrm(P) := " a?/S(P), where ay, ..., a,, are the lengths
of sides of P and S(P) is its area. We have: The harmonic index hrm(t) ==Y . hrm(A;) of a
triangulation t of S C R? achieves its minimum if and only if t is the Delaunay triangulation
of S [1,2].

Let ¢ be a triangulation of S C R%. Denote by R(t,a) := >, R¢vol(A;).

Conjecture 1: The functional R(t,a), where a > 1, achieves its minimum on the set of all
triangulations of S C R® if and only if t is the Delaunay triangulation.

Let D(t,a) :== >, |b; — ¢;|*vol(A;), where b; is the barycenter and ¢; is the circumcenter of
A;.

Conjecture 2: The functional D(t,a), where a > 2, achieves its minimum on the set of all
triangulations of S C R? if and only if t is the Delaunay triangulation.

Theorem 1. Conjectures 1 and 2 are correct for d = 2.

Theorem 2. For any d > 2 the functional R(t,2) — D(t,2) attains its minimum if and only if
t =DT(S).

A proof of this theorem follows from the fact that
R(t,2) — D(t,2) = c(d)Vr(t) + 1(9),

where Vr(t) (see [2,3]) is a functional which achieves its minimum for ¢ =DT(S), ¢(d) is a
positive constant, and 1(S) > 0

!Research supported in part by NSF grant DMS-0807640 and NSA grant MSPF-08G-201.
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Evgenii Scepin

Steklov Mathematical Institute, Moscow.
scepin@mi.ras.ru

The lecture present a review of recent results concerning evaluation of square-to-linear
ratio and related characteristic of Peano Curves. Different applications of Peano Curves in
mathematic and nature will be discussed.
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O6 orpanmyveHnu NOPAAKA OCHU IIAyYIKa B JIOKAJIHHO

npaBuibHOil cucreme lesione!.

Muxaun [HITorpun

Maremaruaecknit Uacruryr nm. B.A.Crexiosa PAH, Mockga.
stogrin@mi.ras.ru

[Tycts B n-mepuom npocrpanctse R™, H™ uiun S™ 3a1a00 MHOXKeCTBO TOUYeK S, y/IOBIETBO-
pSAIOIIee CJIELYIONUM JBYM YCJIOBHSIM:

1) paccrosiHue MeK/y TOYKAMHU U3 MHOYKECTBA S HE MEHbIIE 7'

2) B 3aMKHYTOM Imape pajuyca R ¢ IeHTpOM B IIPOU3BOJILHOlN TOYKE MPOCTPAHCTBA NMEETCS
0 MEeHbIeil Mepe O/lHa TOYKa u3 S.

Torma MHOKecTBO S Ha3biBaercs (1, R)-cucreMoil Todek win xe cucremoii lesone. Bupenb
Oy/ileM CYUTATDb, YTO T SIBJISIETCS] HAMOOJIBIIUM YHCJIOM, YJOBJIETBOPSIONUM ycjaoBuio 1), a R —
HAMMEHBIIIM YHCJIOM, YIOBJIETBOPSAIONINM YCIOBHIO 2). MHOXKECTBO TOUeK u3 S, MPUHAIeKA-
IUX [apy paJuyca p ¢ meHTpoM B Touke A u3 S, obo3uaunm uepe3 S4(p). ['pynmy moBoporos
IIPOCTPAHCTBA BOKPYT TOuKH A, coBMemaomux Sa(p) ¢ coboit, oboznaunm uepe3 H(p). [Iycrsb
p1 — HAMMEHBIIIee YHCJIO, MPH KOTOPOM BbINOIHEHO paBeHcTBO Ha(pr + 2R) = Ha(py). To-
raa Sa(pr + 2R) nazoBeM crabuibHBIM MHOXKeCTBOM To4eK [7isi A. COBOKYIIHOCTH BEKTODPOB C
HAYATIOM B A M KOHIIAMH BO BCEX OCTAJIBHBIX TOUYKAX MHOKeCTBa S4(p1 +2R) Ha30BeM CTaOUIb-
HBIM IaydkoM ToUkH A u obosmadmm uepe3 Py(p; + 2R). B pabore [1| nokasam ciemyrommmii
KpUTEPHIi:

Kpurepuii. Ecau cmabusvrvie nayuky scex moywex ud S KoH2PYIHMHbL, MO MHOHCECTNGO
S asasaemes npasusvhbM U Mo20a S 6 UEAOM 00HO3HAUHO 3a0AEMCA CMAOUAOHBIM NAYUKOM
Pa(p1 +2R).

Cucrema To4YeK S HA3BIBAETCS MPABUIBHOMN, €CIN KazK/1as ee TOUKa OJUHAKOBO OKPYKEHa
BCEMH OCTAJbHBIME TOouKamu u3 S. VHOT[a mpaBUIbHAsl CHCTEMa TOYEK OJHO3HATHO 3aaeT-
sl CBOMM TpecTabuabHbiM maydkoM Py (p;). Hanpumep, Beputunbl miatonoBa pastuenus (k9)
COCTABJISIIOT IPABUJIBHYIO CHCTEMY TOUYEK; /IJIs Hee uMeeM p; = 17 1 H 4 (1) = ¢-m; oHa oHO3HAY-
HO OIPEJIeJISIeTCst 10 cBoeMy npejcrabumibHomy naydaky Pa(r). (s apxumenoBeix pasouennii
sro me tak [1].) Hamomumm: npu 2(k + q) > kq umetorca 5 pas6uennii (k9) chepor S?; npu
2(k + q) = kq umetorca 3 pasbuenna (k?) epknmmosoii miockoctn R?, mpm 2(k + q) < kq
MMeeTcs CueTHoe MHOKecTBO pasbuenuit (k9) miockocru Jlobauesckoro HX.

Bynem nasbiBath (1, R)-cucremy To4ek S JIOKaJbHO HPABUJIBHOMN, €CJIU Jis BeeX ToYeK A
u3 S may4uku P4(2R) KOHIDY HTHBI.

Teopema 1. Ecau (1, R)-cucmema 6 R3 noxarvro npasuavra, mo nopadox nocopommot ocu
a uz epynnv. H4(2R) ne 6oavwe 6.

Joka3zarerpcTBo Teopembr 1. Ot mporusaoro. [lycts mopsiiok ocu a 6osbmre 6. Torma nayaox
P4(r) cocrouT u3 HalpaBJIeHHBIX BIOJb OCH @ He GOjiee deM JIByX KOJIMHEAPHBIX BEKTOPOB.
B camom zeste, ecain Ob1 BeKTOp n3 nayudka Py () He ObLI KOJUIMHEAPEH G, TO PA3MHOYKHB €ro
IIOBOPOTAME BOKDPYT @, MBI TIOJIy4iIn Obl G0oJ1ee 6 BEKTOPOB, MpHHAIeRAmuX Py (r). VIX KOHIbI
JiezKa i ObI Ha OKPYKHOCTH € TIEHTPOM Ha a. Paccrosaue MexK 1y OJIUKARIIIMEA KOHIIAME OBLITO
Obl MEHBIIIE 7', UTO MPOTHBOPEYNIIO OBl YCIOBHIO 1).

Nrak, Bekropbl nayuka P(r) xosuimaeapHbl, a BeKTOpbI maydka P4(2R) cocrabisior [1]
bazucHyo coBokynuocth B R3. [lycrb p, HauMenbliee u3 uuces p Ha orpeske [r,2R], npu xo-

'Pabora BEITOMHEHS, TpH (BUHAHCOBOH Mo ep:kKe Poccuiickoro $honma (pyHIaMeHTAJbHLIX HCCIeI0BAHMI
(mpoekT 08-01-00565) u rocymapcrsennoii nporpammbl OMH PAH “Cospementbie npof/ieMbl TEOPETHYECKOM
MaTeMaTHKN .
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TOPOM BeKTOpBI mayuka Ps(p,) wekosmnueapusl. Torma r < p, < 2R. Ilycrb B Komern To-
ro W3 BEKTOPOB, KOTODBIA He HampaBjieH BIOJb a. Torga Bmecre ¢ AB mayuok Pa(ps) co-
nepxut BeKTOphl AC m AD, xoropsle mosyuaiorca u3 AB mpu moBoporax BOKpYI a Ha
HAWMEHBIINI yroJl MO0 W MPOTHB 49acoBOil cTpesku coorBercTBenno. Touku D, B, C' jexar
Ha OkpyzxkHOCTH ¢ neHTpoM N € a. Pammycet ND, NB, NC nepuenaukyisipubt a. B cury
BD = BC < BN = yBA? — NA?2 < BA = p, Bektopsi BC u BD npuna yiexar He TOJIBKO
nayuky Pg(py), Ho n nognayuky Pg(p), tae p = BC < p,. Tak kak BC u BD nexosuinaeapHsi,
TO JIOKaJIbHOI mpaBuabHOCTH HeT. [IporuBopeune. CienoBaTesbHO, MOPSIOK OCH G He DOJIbIIE
6.

Teopema 2. Ecau nopadok ocu a pasen 6, mo u3 sokarvnoti npagusvhocmu (1, R)-cucmemol
6 R® caedyem ee npasuavrocmu.

/lokazarerpcTBo Teopembl 2. Ilycth mopsmok ocm a paBeH 6. Torma BO3MOXKHO OJHO U3
aByx: 6o p, = r, mbo p, > r. B mobom ciydae nayaok Pa(p,) COMEPXKHUT reKCATOHATBHYTO
CHEKWHKY, OJTHO3HATHO MTPOJIOIKAIONTYIOCS JI0 TUTOCKOII reKcaroHaJ bHOU perreTku. B cumy sToro
U JIOKaJIbHOI npaBuibHOCTH Best (1, R)-cucrema B R3 mpejcras/isier coboil rekcaroHa ibHyo
pelieTKy uju OupenieTKy.

JImreparypa

[1] B. H. Jemoune, H.I1. Toabwruu, M. U. IItorpusn, P. B. Tamuynun. Jlokaabubil Kpurepuii

npasmibHOCTH cuctembl Touek // JJAH CCCP, 227:1 (1976), 19-21.
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Continuous deformation extending over three sphere
packing structures: simple cubic lattice, body-centred
cubic lattice and face-centred cubic lattice

Yoshinori Teshima

National Institute of Advanced Industrial Science and Technology, Japan
yoshinori.teshimaQaist.go. jp

Abstract. We show the existence of a continuous deformation extending over three sphere
packings corresponding to simple cubic lattice, body-centred cubic lattice and face-centred cubic
lattice. Throughout the continuous deformation, each sphere makes contact with at least six
spheres, and the entire structure sustains a packing structure. The changes in packing density,
contact number and space group under the deformation process are explained in detail.

1 Introduction

Three sphere packings corresponding to simple cubic (SC) lattice, body-centred cubic
(BCC) lattice and face-centred cubic (FCC) lattice first appear in the textbook of high-school
chemistry. The sphere packing corresponding to SC-lattice has properties: the packing density
is about 0.52, the contact number (with surrounding spheres) is 6, and the space group is
Pm3m. The sphere packing corresponding to BCC-lattice has properties: the packing density
is about 0.68, the contact number is 8, and the space group is Im3m. The sphere packing
corresponding to FCC-lattice has properties: the packing density is about 0.74, the contact
number is 12, and the space group is Fm3m. All three structures are in the cubic system but
belong to the different space groups. Continuous deformation extending over these three sphere
packing structures seems have never reported in the past papers.

2 FCC-sphere packing is one of layer stacking structures of
hexagonal lattice

Kepler conjectured “Layer stacking of hexagonal lattice is the densest packing of equal
spheres” in 1611. Gauss proved it under the periodic packing in 1831. Hales proved it under the
general condition in 1998. Thus FCC is one of the densest sphere packing structures. Each layer
of hexagonal lattice stacking belongs three kinds of position: A-, B-, or C-site. The stacking
of FCC structure is described as the infinite sequence (...ABCABCABCABC...) and this is
called ABC-stacking. Standard textbooks of solid state physics in university include the fact
the FCC-sphere packing is constructed by the ABC-stacking.

3 SC- and BCC-sphere packings are also ABC-stacking

Each of SC- and BCC-sphere packings can be regarded as the ABC-stacking of hexagonal
lattice too. This is an unfamiliar fact to the public but we can confirm the fact by classifying the
positions of spheres projected to the plane normal to a <111>-direction. Positions belonging
to different heights are classified into A-, B-, or C-site. In FCC-sphere packing, a hexagonal
lattice is consist of mutually contacted spheres. But in SC- and BCC-sphere packing, spheres
in a hexagonal lattice are separated at regular intervals.

4 Intuitive explanation for the continuous deformation
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Now all three sphere packing structures have a common property, that is, layer stackings
of hexagonal lattice. Therefore, it might be possible that three structures are described
comprehensively. Finally, we found the existence of a continuous deformation extending over
three sphere packings. An intuitive explanation is given as follows. Starting from FCC, make
distance of spheres in each layer a little larger. At the moment, contact number of each sphere
changes from 12 to zero. If we compress the structure along stacking direction until layers are
contact, the entire structure sustains a packing structure again.

5 Changes in packing density, contact number and space group under
the deformation process

We investigated changes in packing density, contact number and space group under the
deformation process. An exact expression for the packing density was successfully calculated.
We will explain the details in my talk.

6 The Non-characteristic Orbits

There is an unsolved problem in crystallography, that is, “Find all non-characteristic G-orbits
for any space group in 3D”. In two-dimensional space, general solution for plane groups was
obtained [1]. But in three-dimensional space, the problem was partly solved but the solution
was limited into the same crystal family [2]. During the continuous deformation, the space
group R3m changes to other space groups Fm3m, Im3m, Pm3m which have higher symmetry
than R3m. Fm3m, Im3m, Pm3m are in the cubic system but R3m is in the trigonal system.
Therefore, this is an example of non-characteristic orbits which extend over the different crystal
family. This is the theoretical significance of the present work .
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Creating real 3D models of mathematics

Yoshinori Teshima
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Abstract. Accurate models of mathematically defined curved surfaces and polyhedra
were constructed. Exact shape data were generated on a personal computer (PC) using
mathematical or computer-aided design (CAD) software. Then models were constructed by
layered manufacturing, which is well suited for curved surfaces. This method is flexible in that
the equation parameters and model scale can be changed easily. For polyhedron models, we
created wooden models in addition to layered manufacturing models.

1 Introduction

In the past, there was a systematic study on the development of three-dimensional (3D)
mathematical models in Germany which was started around 1870 [1]. This required a host of
the best mathematicians to work in collaboration with skilled workmen. They developed many
wonderful models, but since production ceased, these models are rarely found these days. We
have been involved with the "Research on the recognition of 3D objects by visually handicapped
persons and development of 3D geometrical teaching materials’ project in Japan since 2006
[2][3]. One of our main aims is to develop teaching materials to enrich the tactile world for the
blind. Many models have been developed thus far. Times have changed. The situation today
is quite different from that in 1870. Now, we can construct mathematical models without the
assistance of the best mathematicians and skilled workmen. In this paper, we describe our 3D
models of mathematically defined curved surfaces and polyhedra.

2 Models of Ring, Horn, and Spindle Torus

Consider an ordinary torus, which is a surface with a hole. Let d denote the radius from
the centre of the hole (0,0,0) to the centre of the torus tube and r denote the radius of the
tube. There are three types of tori depending on the relative values of d and r. The condition
r < d corresponds to a ring torus; r = d, a horn torus, which is tangential to itself at the
point (0,0,0); and r > d, a self-intersecting spindle torus. We created seven kinds of torus which
includes three kinds of ring torus, one kind of horn torus, and three kinds of spindle torus. A
pair of two equally partitioned models were also created for each of seven models. These models
are useful for systematic and intuitive learning of three kinds of torus |3].

3 Models of Hula-Hoop Surface

The horn torus and spindle torus do not have a hole. The abovementioned three kinds of
torus are regarded as the loci of circular movement of a circle, which is perpendicular to the
horizontal plane. If we bend the perpendicular circle backward by 45°, a hole appears at the
centre of locus of circular movement despite the relative size r > d. The surface is called Hula-
Hoop surface [4]. If we consider a semicircular movement (180°) of the inclined circle, we obtain
interesting models which are a pair of mirror images.

4 Models of Bohemian Dome
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We continues to consider circular movements of a circle. But in this case, a circular movement
is performed in a vertical plane. Then, the circle always turns its face towards the vertical
direction. As a result, we obtain an unfamiliar but beautiful surface. This surface is called
Bohemian dome [1]. Another beautiful model is obtained by considering the elliptical movement
of an ellipse [5].

5 Models of Klein Bottle

The Klein bottle is a non-orientable surface. The surface has no distinct ‘inner’ and ‘outer’
sides. And the inside space of the bottle is linked to its outside space. But we cannot create
such a model in 3D because a self-intersection is unavoidable. The self-intersection is avoidable
in 4D. We created two kinds of model for Klein bottle. One is the correct Klein bottle and the
other is the incorrect Klein bottle. A pair of equally partitioned models were created for each
of Klein bottles.

6 Models of Polyhedron

We created models of regular polyhedra and semi-regular polyhedra. Sixteen Archimedean
polyhedra that include both two mirror images and a Miller’s solid. We presented their models
by layered manufacturing and wooden polyhedra.

7 Models of Crystallographic Structure

We created three kinds of space-filling polyhedron: cube, truncated octahedron, and rhombic
dodecahedron. They are corresponding to Voronoi regions for SC (simple cubic), BCC (body-
centred cubic) and FCC (face-centred cubic) lattice respectively.

There are innumerable space-filling polyhedra (e.g., rectangular parallelepiped). But these
three are special because they are the only one polyhedron from regular polyhedra, quasi-regular
polyhedra, and their dual polyhedra respectively.

Acknowledgments. This study was partially supported by a Grant-in-Aid for Scientific
Research (A) (18200049) from the Japan Society for the Promotion of Science (JSPS).
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K reomerpun yniepeHos.

FOpuit BoitrexoBckmuit

TI'eoytormaeckmnit macruryr KHI[ PAH, Amarutor.
woytQgeoksc.apatity.ru

Oytepensl [ camble mHTpUTYIOMKE 00BEKTHI MHPa HAHOPA3MEPHBIX MUHEDPAJIbHBIX U OHO-
JIOTHYIecKuX cTpyKTyp. Ho /10 cux mop HeT moc/ie10BaTe/IbHOTO M3JI0KEHHS Pa3PO3HEHHBIX CBe-
JleHuit 0 KoMOMHATOPHON reomerpun ¢yiepenos. [lox dymiepenavu najgee mOHUMAIOTCS He
TOJIBKO “HODeeBckue” noymdapudeckue Moekysibl Cgy n Crg, HO BCAKHIT 3-MEPHBII BBITTY Kb
HPOCTO#l MOJINIAP, HA KOTOPOM paspelieHbl TOJbKO H- u 6-yrojbubie rpanu. “T1oaBojiHy0 yacTb
aiichepra” mpu J0Ka3aTe/bCTBe TeopeM O (by/iepeHax dBHO WU HEABHO COCTABIAIOT COOTHO-
menne Diiepa [+ v = e + 2 aig m00s1xX [ mpocThx 1 HempocThIX [ BEIMYKIBIX MO IPOB
I CJIeyIoniee U3 Hero paBeHcrBo » (6 — k) fi = 12 1yist BBIMYKJIBIX TPOCTBIX MOMHIIPOB (115
HEIPOCTHIX MOJIUIIPOB HMEET MEeCTO HEepaBeHCTBO > ), rje fi 11 ancsio k-yroapubix rpaueit. Tis
dbymnepenos ono cBoauTesi K cooTHONeHuIo f5 = 12 6e3 orpanmvenuit wa f6 |1]. Bosbimun-
CTBO TeopeM O dy/IepeHax J0Ka3bIBACTCA YKa3aHUEM IIPOIE/IYPhI, IPUBOJLINEHl K IOCTPOCHUIO
npoeknuu [llrerensd. 3aech moapasymeBaeTcs apyras dyHIaMeHTaJbHAs TeopeMa O TOM, UTO
IPOEKIUs MOZKeT OBITh “pacipaBiieHa’ B 3-MepHbIil MOTU3IP, IPUIUM C peau3aliueil ero Mak-
cuMaJIbHON cummerpun. VMest B BULy 9TH OrOBOPKH, MPUBEILYM KOPITYC TeopeM 0O (yJliepeHax,
BOCIHOJTHSIONIUI yKa3aHHBII BbIIE TTPOOET.

Teopema o cymecrBoBanuu dysaepena C, misg v=20 u jroboro aqraoro v > 24. Jlokazana
B [5] u LI mezaBucumo II B [11]. Cy II 310 momekasnp, npocreiimuii u3 dymriepenos. HeBos-
MOKHOCTD ystepena Coy T0Ka3biBaeTCsa B [11] HEBO3ZMOKHOCTBIO MOCTPOEHHS €0 MPOEKIINH
Hlnerensi. B [5, p. 745] sror Bompoc cuuraercs odeBugubiM: “Polyhedra P; and @)1 obviously
do not exist”. (3aech Cyy 0b03HaueH kak Pj.) Mexkiy TeMm, BecbMa J0CAJIHO TO 0OCTOSITEb-
CTBO, 9TO HEBO3MOXKHOCTD (bystepena Coy HE yIadTCs JI0KA3aTh aaredpandecKu, NCXO/Isl U3 W3-
BECTHBIX KOMOHMHATOPHO-IeOMEeTpUIeCKUX cooTHoImeHuit. CyimecTBoBaHne OECKOHEYHOW CepHu
dynnepenoB naunHag ¢ Cyy B 000UX CaydadgX JTOKA3bIBAETCsS KOHCTPYKTUBHO II mpeabsBieHu-
eM “mosiycpepudeckux’ (parMeHTOB PA3/JTHIHON KOHCTPYKIUU, KOMIIO3UIIASA KOTOPBIX BMECTe
C Pa3JUYHBIM YUCJIOM IIOSICOB, COCTOSINNAX W3 MEKCATOHOB, 00ECIeYnBaET CyIecTBOBaHUE (yJi-
aepena C, ¢ HyxkubIM v > 24. B |5] npusenensr 4 “nonycdepudeckux” dparmenta, B [11] IT 5,
YTO COCTABJ/ISIET UX MOJHOE YHC/I0. BerpanBanue B CTPYKTYPY HOsICOB MEKCATOHOB MOPOZKJIA€T
cepuio pyIepeHoB ¢ cOOCTBEHHBIM Ha3BaHUEM “TyOy/eHbI”, IPOU3BOJICTBO KOTOPHIX HA OCHOBE
yIJiepojia BeCbMa BarKHO /I 9JIEKTPOHUKH.

Teopema o cymecrBoBaruu mpocreiimx gyiiepenos C, 6e3 Tpuaj MeHTaroHOB, KOHTAKTH-
pyfomux B obieit Bepiune, Juisi v=>50. /lokazana B |7] KOHCTPYKTHBHBIM CIIOCOOOM € HOCTPO-
ennem sByXx takux dysmiepenos Cso (-10m2, 32). KomuboorepHbie nepedncieHus MOKa3aJu,
YTO YHCI0 TakKuxX ¢Gopm ObICTpo pacTdT ¢ v, aadg auamnasona Cyg [I Crg Bce oHm HaiigeHbl n
OXapaKTepU30BaHbl TOYeYHbIMU TpynaMu cumMerpuu B [9]. Ho orcyTcrByer moka3aTeabcTBO
TOro, 4T0 Takue (pysaepeHbl BOZMOXKHBI JIjIsd Ji000ro ddrHOoro v>50. Ev dusmieckoii momo-
IUTYKOI CJLyZKUT TO, 9TO B OPraHu3aluu Takux (dy/ureperos (1o cpaBHeHUIO ¢ dyJIepeHamMu ¢
TpuaJgaMl KOHTaAaKTUPYIOHIUX HeHTaFOHOB) coBeplIaeTcHd BaKHbIII CKAQYOK Ha IIyTHU K HUX IIOTEH-
UAJIbHON CTaOUIbHOCTH. EcTh (DaKThI, TOBOPSIIUE O TOM, YTO OHH MOTYT OBITH CTAOUJIbHBIMU,
B OCOOEHHOCTH TIPU HAJHIUHU JOMUPYIOIIHX aTOMOB.

Teopema o cymiectBoBanuu ¢yiepena C, 6€3 KOHTAKTHPYIOIUX IeHTAroHOB g v =60 u
aroboro garnoro v = 70. Tokazana B |6, 10] KOHCTPYKTHBHBIM CIOCOOGOM, O AHAJIOTHHU C JOKa-
3aTeJIbCTBOM TeopeMbl 0 cytecTBoBannn ¢ysiepena. Ho B [6] ucnonbzosanst 4 “nosycdepunde-
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ckux” ¢dpparmenta, Torga kak B [10] IT Bce 18, 3aMONHSAIONIX TOT Ke KOHTYD U MOPOZK TAFOIIAX
ropaso 60Jbilee pa3HooOpasue OECKOHEUHBIX cepuii (pyraepeHoB 6e3 KOHTAKTUPYIOMHUX IeH-
TaroHoB. Pu3nvecKas MOJOILTIKA TEOPEMbI COCTOUT B TOM, UTO HamboJee CTAOMIbHBI MMEHHO
dyanepenbl 6e3 KOHTAKTHPYOIMUX HEHTATOHOB. DTa, TEOPEMa, YKA3bIBAET BayKHbBIE OIPAHUIEHHST
Ha 9IHUCJI0 BepIMHH (aTOMOB) TakuX (by/IepeHoB.

Teopema o cymiecrBoBanun ukocadapuieckux dysiepenos C, upu v = 20(h% + hk +k?), tue
0 < h >k >0II nensie yucia. /Jokazana B [4]. BaKHOCTH T€OpEMBI COCTOUT B TOM, YTO OHA
YKa3bIBAET HEOOXOAMMOE U JIOCTATOYHOE YCJIOBUE JIJI YHCJIa BEPIIHH HKOCAIPUIECKUX (CAMBIX
CHUMMETPUYHBIX U [IOTOMY IOTE€HIUATIBHO Hanbosee ctabuibubix) dysiepenos. Joctaroanoctsb
peajin3yercst depe3 KOHCTPYKTHUBHYIO CXeMy MOCTpoeHust (ysiepeHa ¢ 3aJaHHbiM V. MOKHO
nokasarb, aro ¢ysiepensr (h, 0) u (h, h) umeror cummerpuio -3-5m, dbysrepenst (h, k) npu
h # k II cummerpuio 235. Buomorndeckas MOJOILTIKA TEOPEMbI COCTOUT B CYIIECTBOBAHHIH
OOIIMPHOrO KJIACCA MKOCAIPUIECKAX BHPYCOB, PAIUONAPHNA U MPOCTEHIINX BOIOPOCTEil, 1Is
KOTOPBIX TEOPEMa YKa3bIBAET CTPOrHe MPUIUIBI KIaccupuKAImun CTpyKTyp [2].

Teopema o dysiepenax-reneparopax. Jlokaszana B [3]. [Tokazano, 9ro B MHOXKECTBE HKOCA/T-
pudecknx (yJIIEPEHOB CYIIECTBYIOT OecKoHedHbIe cepur ABYyX THIoB. (*) ITopoxkmaercs mepexo-
JIOM K JIyaJIbHOMY MOJIHIPY U ycedeHueM ero mo BeeM Bepumnam: (h, k) — (h+2k, h—k). Yucmo
BepinH (yJIepeHa yBeJInIuBaeTcs npu 3toM B 3 pasa. (**) ITopoxkaaercs “npeobpazoBaHuem
nonobus” (h, k) — (th,tk), vae t 11 a060i HATYpATbHBIH MHOXKHUTEb. YuCI0 BepiuH dyLTe-
peHa yBeJMIHBaeTCsl PpH 5TOM B t2 pa3. [IByKparHoe npuMenenne mponeaypbl (*) paBHOCHIBHO
nporeaype (**) ¢ t=3. Feneparopamu HazBaubl Qysepensl, He moJaydaeMble nporesypamu (*)
u (**) u3 6osee mpocreix. [TokazaHo, YTO TeHEPATOPAME SIBJISIIOTCSI T€ W TOJBKO Te (DyJIepeHst
(h, k), st koTopbix h # k(mod3). Onucanue MHOrooGpasns HKOCA3IPUIECKUX (bOPM Ha yPOBHE
reHepaTopOB IIPOINE, YeM Ha YPOBHE HHINBHIYAJLHBIX (OpM. DTa TeopeMa yriayO/iseT mpebl-
JIYIIYIO U TaKyKe HMEeT OTHOIIEHWe K OMUCAHWIO MHOTOO0Opa3mii MKOCAdAPUIECKUX BUPYCOB W
paanossipuii (Circogonia icosahedra, Circogonia dodecahedra u np.).

Teopema 00 nkocasapudeckux (dyuiepeHax-m3oMepax. AHaJI3 HKOCAdAPHIECKuX Py/Liepe-
HOB OOHApY2KUBAET W30Mepbl, pocreiimme u3 vux: (7, 0) u (5, 3) ¢ 980 Bepmuuamu, (9, 1) u (6,
5) ¢ 1820 Bepurunamu. KoMIbIOTEPHBIMHA [ePEYHCICHUSIMU HANIeHbI TpocTeiiine cepuu 710 10
u30MepoB. B aroMHOM mpejicTaB/IeHUN OHU CTOJIb OFPOMHBI, 9TO UMEIOT JIWIIb TEOPEeTUIeCKUit
unrepec. To ectb, B GumKaiimeit obaacru cinekrpa mapa gucen (h, k) dbukcupyer naxke Kom-
ounaropublii Tuin dysepena. Ho Teopernyeckn mHTEpECEeH BOIPOC O HPOCTEHIINX TPOHKax,
geTBUpKax 2K n-xKax mKocasdapuuecKux (yLIepeHoB-m30MepoB. TeopeTuKo-dncaIoBas 3a1ada
COCTOUT B OTBICKAHHU IOCJEI0BATEIHHOCTH HATYPAIbHBIX N, JTOIMYCKAOIIUX 33 JaHHOE YHCJIO
I Pa3IHYHBIX IpPeJCTaBACHUII B BUIe HEIOJHOTO KBajaparta h? 4+ hk + k%. B obmem Buie oHa
He perreHa. JIerko mokasarhb, YTO B CEPUU MKOCAIPUUECKUX HU30MEPOB JIUIIL OUH (yiepeH
MOZKeT UMeTh cuMMeTpuio -3-5m. JleiicrBurenbHo, nkocasapudeckue (-3-5m) dbysiepensl npe/-
craBaeHbl unib cepusavu suga (h,0) u (h,h) ¢ uucaamu Bepumn h? u 3h%, cOOTBETCTBEHHO.
OueBu/IHO, cepun He TepecekatoTcsa. Ho B kaxoil cepun mapa (h, k) onpejessier KOMOHHATOP-
HBI THI (Qy/TIepeHa 0JHO3HAYHO, YeM U 3aKAHINBAETCA JTOKA3ATETbCTBO.

Teopema o 3amrHyTOM KOHTYpe. /lokazana B [10| B Buje jiemMbl, npeaBapsiomiei JoKa-
3aTeJIbCTBO TeOpeMbl 0 cyinecTBoBanun dysiepena C, 6e3 KOHTAKTHPYIOIUX MEHTATOHOB (II.
3). Teopema MOKa3bIBAET, UTO YUCJO IEHTATOHOB BHYTPH JIIOGOr0 3aMKHYTOrO KOHTYpA Ha IMO-
BEPXHOCTH (pyJIepeHa CTPOTO OMpeIeeHO CAMUM KOHTYPOM: [z = 6 + €;p,€out, TAE €ip M Eout
[1 umcsra pebep, TPUMBIKAIOIINX K KOHTYPY H3HYTPH U CHApYZKH, cOOTBeTcTBeHHO. OHAa 1adr
BO3MOYKHOCTH AJITOPUTMUYECKOrO MOUCKA MEHTANOHOB HA KaK YTOJHO OOJIBINONW MOBEPXHOCTH

dy/uiepena.
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Teopema o cpemuem pajauyce dymiepena C,,. [Tokazana B [8|. [Tox cpegaum paguycom dy.rie-
peHa MOHUMAETCs PAIINYC SKBUILIONAIHON cdepbl. OH orpannden paauycamu cdep, BIUCAHHBIX
B (bymiepen u onucanubx 0koJ10 Hero. [lokazano, 1ro cpennuit paguyc dyriepera mpomopIm-
OHaJIeH JTHHe pedpa rekcarona, a KoddduIenT mponopuoHaIbHOCTH ¢(v) TabyImpoBaH s
v = 60-+100. Pazmep dysiepena aype3BbryaiiHo BayKeH BBULY €r0 CIIOCOOHOCTH BKJIIOYATH aTOMBbI
U KJIACTEPHI ¢ 00PA30BAHUEM JH/I03IPAJIHHBIX CTPYKTYP, UPE3BBIYANHO BAaXKHBIX B PA3JTHIHBIX
TeXHUIECKUX MPUMEHEHUAX U PACIPOCTPAHIHHBIX B MUHEPAJIHHON MPUPO/IE.
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We review the analysis of the Cosmic Web by means of an extensive toolset based on the use
of Delaunay and Voronoi tessellations. The Cosmic Web is the salient and pervasive foamlike
pattern in which matter has organized itself on scales of a few up to more than a hundred
Megaparsec. The weblike spatial arrangement of galaxies and mass into elongated filaments,
sheetlike walls and dense compact clusters, the existence of large near-empty void regions and
the hierarchical nature of this mass distribution are three major characteristics of the comsic
matter distribution.

First, we describe the Delaunay Tessellation Field Estimator. Using the unique adaptive
qualities of Voronoi and Delaunay tessellations, DTFE infers the density field from the
(contiguous) Voronoi tessellation of a sampled galaxy or simulation particle distribution and
uses the Delaunay tessellation as adaptive grid for defining continuous volume-filling fields
of density and other measured quantities through linear interpolation. The resulting DTFE
formalism is shown to recover the hierarchical nature and the anisotropic morphology of
the cosmic matter distribution. The Multiscale Morphology Filter (MMF) uses the DTFE
density field to extract the diverse morphological elements - filaments, sheets and clusters -
on the basis of a ScaleSpace analysis which searches for these morphologies over a range of
scales. Subsequently, we discuss the Watershed Voidfinder (WVF), which invokes the discrete
watershed transform to identify voids in the cosmic matter distribution. The WVF is able to
determine the location, size and shape of the voids. The watershed transform is also a key
element in the SpineWeb analysis of the cosmic matter distribution. Finding its mathematical
foundation in Morse theory, it allows the determination of the filamentary spine and connected
walls in the cosmic matter density field through the identification of the singularities and
corresponding separatrices. The first results of a direct implementation on the Delaunay
tessellation itself are presented. Finally, we describe the concept of Alphashapes for assessing
the topology of the cosmic matter distribution.
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