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Introduction

In the paper [Akh1] a de�nition of cyclic structure for self-transversal PL�
mapping d : RPn−k → Rn, with, generally speaking, critical points was pro-
posed. Assuming the dimensional restriction

n− 4k ≥ 7, n = 2` − 1, n− k ≡ 0 (mod 4), (1)

this de�nition was used in [A1] to investigate problems in stable homotopy
groups of spheres. In the paper [Akh1] the notion of cyclic structure was
considered only in the case n − 2k ≥ 15. In this paper we present another
de�nition of cyclic structure

In the �rst part of the paper we investigate the dimensional restriction

n− 3k ≥ −8, n− k ≡ 0 (mod 2). (2)

And prove Lemma 2A. In the second part we prove the main result: Lemma
2B, assuming the following dimensional restriction

n− 5k ≥ −16, n− k ≡ 0 (mod 4). (3)
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By the dimensional restriction (3) the condition (1) is possible only in the
case n ≥ 127, i.e. in the case ` ≥ 7. This case is used in the Main Result in
[A1].

Let us start by the main de�nition. Denote by Id ⊂ Ia ⊂ D the following
subgroups Id = Z/2, Ia = Z/4 in the dihedral group D of the order 8 (see
more details in [A1, p.5]).

Let d : RPn−k → Rn be an arbitrary PL-mapping. Denote by N =
N(d) the polyhedron of self-intersection points of the mapping d (see the
formula (18) below). This polyhedron, generally speaking, has a boundary
∂N (this boundary consists of critical points of the mapping d). Assuming
the condition (2), a self-transversal mapping can have only self-intersection
points of the multiplicity 2 and the embedding N ⊂ Rn is well de�ned. In
the considered case the polyhedron N has the dimension n − 2k. Denote
by N◦ an open polyhedron N \ ∂N , denote by U(∂N)◦ a deleted regular
neighborhood of the boundary ∂N .

For an arbitrary N = N(d) the canonical 2�sheeted covering N̄ → N
with rami�cation over the boundary ∂N is well de�ned (see the formula (19).
The standard inclusion iN̄ : N̄ ⊂ RPn−k ×RPn−k is well de�ned. The inverse
image of the diagonal RPn−k

diag ⊂ RPn−k×RPn−k with respect to the inclusion iN̄
coincides with the boundary ∂N . The inclusion iN̄ is invariant with respect
to the standard involutions (given by the permutation of the preimages) in
the target and in the source, denoted by TN̄ è TRPn−k correspondingly.

Let us assume that the image of the mapping d is contained on the surface
of the standard embedding sphere Sn−k ⊂ Rn. In this case the following
TN̄ -, TRPn−k-, TSn−2-, and TRn-equivariant mappings (the �rst and the third
equivariant mappings are equivariant embeddings):

N̄ ⊂ RPn−k × RPn−k → Sn−k × Sn−k ⊂ Rn × Rn, (4)

where by TSn−k is denoted the standard involution on Sn−k×Sn−k, by TRn is
denoted the standard involution on Rn×Rn. The inverse image of the diag-
onal Sn−kdiag ⊂ Sn−k × Sn−k contains RPn−k

diag , the inverse image of the diagonal

Rn
diag ⊂ Rn × Rn coincides to Sn−kdiag .

Let d(2) : RPn−k × RPn−k → Rn × Rn be an arbitrary TRPn−k ,
TRn�equivariant mapping, transversal along the diagonal. Denote
(d(2))−1(Rn

diag)/TRPn−k by N = N(d(2)) and let us call this polyhedron the

polyhedron of (formal) intersection of the mapping d(2). For an arbitrary
point x = (x1, x2) ∈ N , x1 6= x2, denote by U(x) a neighborhood of the point
x, which is a Cartesian product of neighborhoods x1 ∈ V (x1) ⊂ RPn−k è
x2 ∈ V (x2) ⊂ RPn−k.
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De�nition 1. Let us call that an equivariant mapping d(2) has a holonomic
(formal) self-intersection, if there exists a mapping d : RPn−k → Rn, such
that d(2) is the holonomic extension of d in a small regular equivariant neigh-
borhood Udiag ⊂ RPn−k×RPn−k of the diagonal RPn−k

diag ⊂ RPn−k×RPn−k, and,

moreover, if for an arbitrary point x = (x1, x2) ∈ N̄ \(N̄∩Ūdiag) the mapping
d(2) in a small neighborhood U(x) = V (x1)× V (x2) of this point is a Carte-
sian product of the two mappings f1 : V (x1) → Rn and f2 : V (x2) → Rn,
d(2) = f1 × f2 (generally speaking, fi 6= d|V (xi), i = 1, 2).

De�nition of cyclic structure (comp. with [De�nition 24,A1])

Let a polyhedron N◦ be a polyhedron of (formal) self-intersection of an equiv-
ariant mapping d(2), n = 2l − 1, l ≥ 7. For an arbitrary non-negative integer
q, assuming the dimensional restriction n − 2k − 2q ≥ 1, let us de�ne the
following relative homology class

[Nq, ∂] ∈ Hn−2k−2q(N◦, U(∂N)◦;Z/2), (5)

where by U(∂N)◦ ⊂ N◦ is denoted a regular deleted neighborhood of the
boundary.

Denote by

d(2)
q : RPn−k−q × RPn−k−q ⊂ RPn−k × RPn−k (6)

the restriction of the equivariant mapping d(2) on the Cartesian product of the
standard projective subspace of the codimension q. In particular, for q = 0
we get d

(2)
q = d(2). Let us assume that the equivariant mapping d(2) is generic

and that each mapping (6) is also generic. Let us denote the polyhedron of
(formal) self-intersection points of the mapping (6) by

Nq, Nq◦ = Nq \ ∂Nq. (7)

Obviously, we have dim(Nq) = n− 2k − 2q.
The following standard inclusion

iNq◦ : Nq◦ ⊂ N◦. (8)

is well de�ned.
Let us de�ne a relative homology class (5) as the image of the relative

fundamental class of the polyhedron with boundary (7) (assuming d(2) is
generic, this relative fundamental class is well de�ned) by the inclusion (8).

Assume that the mapping

µa : (N, ∂N)→ (K(Ia, 1), K(Id, 1)) (9)

3



is well de�ned.
For an arbitrary q ≥ 0 the following characteristic number in the left side

of the equation

〈µ∗a(tq); [Nq, ∂]〉 = 1, (10)

is well de�ned, where tq ∈ Hn−2k−2q(K(Ia, 1), K(Id, 1);Z/2) is the generic
cohomology class, which transforms to the generic cohomology class in
Hn−2k−2q(K(Ia, 1);Z/2) by means of the homomorphism

j∗ : Hn−2k−2q(K(Ia, 1), K(Id, 1);Z/2)→ Hn−2k−2q(K(Ia, 1);Z/2).

The mapping (9) is called the cyclic structure of the equivariant mapping
d(2) with holonomic self-intersection (in particular, if d(2) is a extension of a
self-transversal mapping d), if the family of equations (10) are satis�ed and
the following boundary condition:

µa|U(∂N)◦ = κ◦|U(∂N)◦ , (11)

is satis�ed, where κ◦ : U(∂N)◦ → K(Ib, 1) is the mapping, which determines
the reduction of the structural mapping η◦ on the deleted neighborhood of
the boundary U(∂N)◦.

The main result is the following lemma.

Lemma 2.

A. Assuming the dimensional restriction (2), there exists a generic PL-
mapping d : RPn−k → Rn (with singularity), such that the formal exten-
sion d(2) of d admits a cyclic structure. Moreover, the structured mapping
η◦ : N◦ → K(D, 1) admits a reduction to a mapping into K(Ia, 1) ⊂ K(D, 1),
which is de�ned by the mapping µa : N◦ → K(Ia, 1), namely, η◦ = iIa,D ◦ µa,
where iIa,D : K(Ia, 1) → K(D, 1) is the mapping, which is induced by the
inclusion of the cyclic subgroup.

B. Assuming the dimensional restriction (3), there exists an equivariant
generic mapping d(2) with holonomic self-intersection, which admits a cyclic
structure.

1 Auxiliary mappings

Construction of an axillary mapping c : RPn−k → Rn, ĉ : Sn−k/i→ Rn

Denote by J the standard (n− k)�dimensional sphere, which is represented
as the join of n−k+1

2
= r copies of the circle S1. We denote the standard
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embedding of J into Rn of the codimension n− k by

iJ : J ⊂ Rn. (12)

The mapping p′ : Sn−k → J is well de�ned as the join of r copies of the
standard 4-sheeted coverings S1 → S1/i. The standard action Ia × Sn−k →
Sn−k commutes with the mapping p′. Thus, the map

p̂ : Sn−k/i→ J (13)

is well de�ned and the map (covering with rami�cation)

p = p̂ ◦ π : RPn−k → J (14)

is well de�ned as the composition p̂ ◦ π : RPn−k → J of the standard double
covering π : RPn−k → Sn−k/i with the map p̂.

The required auxiliary mapping c is denoted by the composition

c = iJ ◦ p : RPn−k → J ⊂ Rn. (15)

The required auxiliary mapping ĉ is denoted by the composition

iJ ◦ p̂ : Sn−k/i→ Rn. (16)

2 Con�guration spaces and singularities

Subspaces and factorspaces of the 2-con�guration space for RPn−k,
related with the axillary mappings c, ĉ

Let us de�ne a manifold with boundary Γ, the interior of this manifold with
boundary Γ◦ ⊂ Γ and 2-sheeted covering Γ̄. Let us consider the con�guration
space

Γ = (RPn−k × RPn−k \∆RPn−k)/T̄ (17)

of the space RPn−k, which is called the "`deleted product"'. This space is
the quotient of the deleted Cartesian product with respect to the involution
T ′ : RPn−k×RPn−k → RPn−k×RPn−k, which permutes the coordinates. The
space (17) is an open manifold.

De�ne the space Γ′ (a manifold with boundary) as the spherical bow-
up of the space (17) along the diagonal. Recall, that the spherical blow-up
is de�ned as the standard compacti�cation of the open manifold RPn−k ×
RPn−k \ ∆RPn−k by means of �berwise gluing of the �bers ST∆RPn−k of the
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spherization of the tangent bundle T∆RPn−k of the normal bundle over the
diagonal ∆RPn−k ⊂ RPn−k × RPn−k. The following natural inclusions are
well-de�ned:

RPn−k × RPn−k \∆RPn−k ⊂ Γ̄,

ST∆RPn−k ⊂ Γ̄.

On the total space of 2-sheeted canonical covering Γ̄′ of the space Γ′ the
following free involution T̄ ′ : Γ̄→ Γ̄, which is the extension of the involution
T̄ is well de�ned.

The quotient Γ̄′/T̄ ′ denote by Γ′, the corresponding 2-sheeted covering
denote by

pΓ′ : Γ̄′/T̄ ′ → Γ′.

The space Γ′ is an open manifold with boundary, this manifold is called the
blow-up of the con�guration space (17). The projection p∂Γ′ : ∂Γ′ → RPn−k

is well de�ned, this projection is called the resolution of the diagonal.
For an arbitrary PL�mapping d the polyhedron N◦ = N◦(d) of self-

intersection points of d is de�ned by the formula:

N◦ = Cl{([x, y]) ∈ int(Γ) : y 6= x, d(y) = d(x)}. (18)

By the Porteous Theorem [Por], assuming that the mapping d is smooth
and generic, the polyhedron N◦ is the interior of the manifold with boundary
of the dimension (n− 2k), denote this manifold with boundary by Nn−2k(d).

It is easy to check that the formula (18) determines an inclusion of the
pair of polyhedra:

iN : (N, ∂N) ⊂ (Γ, ∂Γ).

The boundary ∂N of the polyhedron N is called the polyhedron of critical
points of the mapping d. The natural mapping (Nn−2k(d), ∂Nn−2k(d)) →
(N, ∂N), called the resolution mapping, is well de�ned. The restriction of
this mapping on Nn−2k(d) \ ∂Nn−2k(d) is a PL-homeomorphism onto N◦.
The canonical 2-sheeted covering

pN : N̄ → N, (19)

with rami�cation over the boundary ∂N (over this boundary the covering is a
PL-homeomorphism) is well de�ned. The following diagram is commutative:

iN̄ : (N̄n−2k(d), ∂N̄n−2k(d)) ⊂ (Γ̄′, ∂Γ̄′)

↓ pN ↓ pΓ

iN(d) : (N, ∂N) ⊂ (Γ, ∂Γ).
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Structural mapping ηN◦ : N◦ → K(D, 1)

Let us de�ne a mapping

ηΓ′ : Γ′ → K(D, 1), (20)

which is called the structural mapping of the "`deleted product"'. Let us
note that the inclusion Γ̄ ⊂ RPn−k × RPn−k induced the isomorphism of
the fundamental groups, because the codimension of the diagonal ∆RPn−k ⊂
RPn−k × RPn−k satis�es the inequality n − k ≥ 3. Therefore the following
equation is satis�ed:

π1(Γ̄) = H1(Γ̄;Z/2) = Z/2⊕ Z/2. (21)

Let us consider the induced automorphism T ′∗ : H1(Γ̄′;Z/2) →
H1(Γ̄′;Z/2). Note that this automorphism is not the identity. Let us �x the
isomorphism H1(Γ̄′;Z/2) è Ic, where the generator of the �rst (correspond-
ingly, the second) factor of the group H1(Γ̄′;Z/2) (see (21)) is mapped to
the generator ab ∈ Ic ⊂ D (correspondingly, to the generator ba ∈ Ic ⊂ D),
which in the standard representation of the group D is determined by the
symmetry with respect to the second (correspondingly, to the �rst) coordi-
nate axis.

It is easy to verify that the automorphism of the conjugation with respect
to the subgroup Ic ⊂ D by means of the element b ∈ D \ Ic (in this formula
the element b can be chosen arbitrarily), de�ned by the formula x 7→ bxb−1,
corresponds to the automorphism T ′∗. The fundamental group π1(Γ′) is a
quadratic extension of π1(Γ̄′) by means of the element b, and this extension
is uniquely de�ned up to isomorphism by the automorphism T ′∗. Therefore
π1(Γ′) ' D, and hence the mapping ηΓ′ : Γ′ → K(D, 1) is well de�ned.

It is easy to verify that the mapping ηΓ′|∂Γ′ takes values in the subspace
K(Ib, 1) ⊂ K(D, 1). The mapping ηΓ′ induces the map

η◦ : (N◦, U(∂N)◦)→ (K(D, 1), K(Ib, 1)), (22)

which we call the structure mapping. (The notion of the structure map-
ping is analogous to the notion of the classifying mapping for D�framed
immersion.) Also, it is easy to verify that the homotopy class of the com-

position U(∂N)◦
η◦−→ K(Ib, 1)

pb−→ K(Id, 1) coincides with the characteristic
map κ : U(∂N)◦ → RPn−k → K(Id, 1), which is the composition of the res-
olution map U(∂N)◦ → ∂N ⊂ RPn−k and the embedding of the skeleton
RPn−k ⊂ K(Id, 1) in the classifying space.
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Structural mapping ηΣ◦ : Σ◦ → K(D, 1)

The formula (18) is well-de�ned for an arbitrary mapping. Let us apply this
formula to the mapping p, given by the formula (14).

Denote by Σ◦ ⊂ Γ◦ the polyhedron of self-intersection points of the map-
ping p : RPn−k → J , this polyhedron is de�ned by the formula (18) in the
case d = p. This polyhedron is equipped with the structural mapping

ηΣ◦ : Σ◦ → K(D, 1), (23)

which is induced by the restriction of the structural mapping ηΓ◦ on the space
Σ◦.

Denote by

Σantidiag ⊂ Γ◦ (24)

the subspace, called the antidiagonal, which is de�ned by {[(x, y)] ∈ Γ◦ :
x, y ∈ RPn−k, x 6= y, TRP(x) = y}. It is not hard to check that the antidiagonal
Σantidiag ⊂ Γ◦ is de�ned as the �xed point set of the involution TΓ◦ .

The polyhedron Σ◦ ⊂ Γ◦ of self-intersection points of the mapping p is
represented by the union

Σ◦ = Σantidiag ∪K◦, (25)

where K◦ is the open polyhedron, which contains all points in Σ◦, but points
on the antidiagonal. The restriction of the structured mapping ηΓ◦ : Γ◦ →
K(D, 1) on ΓK◦ and on K◦ denote by ηΓ◦ and ηK◦ correspondingly.

Let us consider the closure Cl(K◦) ⊂ Γ of the polyhedronK◦ ⊂ Γ◦, denote
this polyhedron by K Denote by Qantidiag the space Σantidiag ∩K, denote by
Qdiag the space ∂Γdiag ∩K. Evidently, Qdiag ⊂ K and Qantidiag ⊂ K. Let us
called the considered subspaces the boundary components of the polyhedron
K.

Denote by η◦ the restriction of the structural mapping ηΓ◦ on the open
polyhedron K◦. Note that the structural mapping η◦ extends from K◦
on the component of the boundary Qantidiag. Denote this extension by
ηQantidiag : Qantidiag → K(D, 1). The mapping ηQantidiag is represented by the
composition of the mapping ηantidiag : Qantidiag → K(Ia, 1) and the standard
inclusion iIa,D : K(Ia, 1) ⊂ K(D, 1).

The structural mapping η◦ does not extended to the component Qdiag of
the boundary. The mapping

ηdiag : Qdiag → K(Id, 1) (26)
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is well de�ned.
Let us denote by U(Qdiag)◦ ⊂ K◦ a small regular deleted neighborhood of

Qdiag. The standard projection projdiag : U(Qdiag)◦ → Qdiag is well de�ned.
The restriction of the structural mapping η◦ on the neighborhood U(Qdiag)◦
is represented by the composition of the mapping ηUQdiag◦ : U(Qdiag)◦ →
K(Ib, 1) and the mapping iIb,D : K(Ib, 1)→ K(D, 1). The homotopy classes
of the mappings ηdiag and ηUQdiag◦ are related by the following equation:

ηdiag ◦ projdiag = pIb,Id ◦ ηUQdiag◦ . (27)

Resolution space RΣ of the polyhedron Σ

Below the space RΣ, which is called resolution space of the polyhedron Σ, is
de�ned.

The space RΣ is decomposed as following:

RΣ = RN ∪RL, (28)

where RN and RL are closed polyhedra.
The projection

RΣ
pr−→ Σ, (29)

is well de�ned, moreover, there is an inclusion Qdiag ⊂ pr(RL).
The following mapping of triads are well de�ned:

(RN,RL;RN ∩RL)
φRN ,φRL−→ (K(Ia, 1), K(Ib, 1);K(Id, 1)). (30)

Denote by

φ : RΣ→ K(Ia, 1) (31)

the mapping, which coincides on the subpolyhedron RN ⊂ RΣ to the map-
ping φRN from the diagram (30), and on the subpolyhedron RN ⊂ RΣ
coincides to the composition of the mapping φRL from the diagram (30) with
the projection pIb,Id : K(Ib, 1) → K(Id, 1) (this two restrictions de�ne the
mapping φ).

Let us introduces the following denotation: RQdiag = (pr)−1(Qdiag). De-
note by U(RQdiag) the regular neighborhood and by U(RQdiag)◦ the regular
deleted neighborhood of the subpolyhedron RQdiag ⊂ RK. The neighbor-
hood U(RQdiag) is small, such the inclusion U(RQdiag) ⊂ RL is well de�ned.

The following diagram of mappings is well de�ned:
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U(RQdiag)◦
pr−→ U(Qdiag)◦

φIb ↘ ↙ ηUQdiag◦
K(Ib, 1),

(32)

in this diagram by φId is denoted the restriction of the mapping φRL (see.
(30)) on the subspace U(RQdiag)◦ ⊂ RL, the mapping ηUQdiag◦ is de�ned
above the formula (27).

To prove the main result the following lemma is required.

Lemma 3. There is a space RΣ which is equipped with the mapping (31).
The commutative diagram (32) determines the boundary conditions.

3 The beginning of the proof of main result in

the case of dimensional restriction (2)

Let us recall that the polyhedron J is PL�homeomorphic to the standard
sphere Sn−k. Let us consider the embedding (12) and let us present this
embedding by the composition of the standard embeddings: i0 : J ⊂ Rn−k+1,
i1 : Rn−k+1 ⊂ Rn−3, i2 : Rn−3 ⊂ Rn.

Let us consider the mapping ĉ : Sn−k/i → Rn, which is given by the
formula (16). Let us present this mapping as the composition of the mapping
ĉ0 : Sn−k/i → Rn−k+1, the mapping i1 : Rn−k+1 ⊂ Rn−3 and the mapping
i2 : Rn−3 ⊂ Rn.

Let us consider the mapping ĉ′1 : Sn−k/i→ Rn−3, which is obtained from
ĉ1 = i1 ◦ ĉ by means of C1�small PL�deformation, which is vertical with
respect to the orthogonal projection projJ of a small regular neighborhood UJ
of the embedding sphere i1 ◦ i0 : J ⊂ Rn−3 onto the central sphere Im(i1 ◦ i0).
Let us consider the mapping p ◦ ĉ′1 : RPn−k → Sn−k/i → Rn−3 and de�ne
the mapping c′1 : RPn−k → Rn−3 as the result of an additional projJ -vertical
C1�small PL-deformation, much smaller then the deformation i1 ◦ ĉ0 7→ ĉ′1.

Let us denote the polyhedron of self-intersection points of the mapping
c′1 and its interior by

N ′◦ ⊂ N ′. (33)

By dimensional reason the mapping c′1 has no self-intersection points of the
multiplicity 3 and greater. The codimension codim(Σ(c′1)) of this polyhe-
dron inside the source manifold RPn−k is equal to k − 3 and, assuming the
dimensional restriction (2), we get: 2codim(N ′) > n− k.
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Because the deformation p ◦ ĉ1 7→ c′1 is vertical, the polyhedron N ′◦ is a
subpolyhedron in Σ◦.

The following commutative diagram is well de�ned:

N ′◦ ⊃ U(N ′diag)◦

↓ η◦

K(D, 1).

(34)

Below in Lemma 6 we de�ne the required mapping d : RPn−k → Rn by
means of an additional deformation i2 ◦ c′1 7→ d. The deformation i2 ◦ c′1 7→ d,
generally speaking, is not vertical with respect to projJ ◦(Rn → Rn−3), where
Rn → Rn−3 is the standard orthogonal projection. Properties of the mapping
d are described below in Lemma 4.

The following commutative diagram (35) of maps of polyhedra with de-
scribed boundary conditions under the diagram is well de�ned. To the spaces
in the lines 4,5,6 of this diagram are mapped the spaces of the lines 2,3,4 of
the commutative diagram (36) correspondingly.

K(Ia, 1)

↑ φ ↖ φ

RΣ ⊃ U(RQdiag)◦

↓ pr ↓

K ⊃ U(Qdiag)◦

∪ ∪

N ′◦ ⊃ U(N ′diag)◦

↓ η◦

K(D, 1).

(35)
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K(Ia, 1)

↑ µa ↖ µa

N◦ ⊃ U(Ndiag)◦

↓ η◦

K(D, 1).

(36)

Boundary conditions in the deleted neighborhood U(Ndiag)◦ are given by
the formula: µa = ηdiag : U(Ndiag)◦ −→ K(Id, 1) −→ K(Ia, 1).

In this diagram (36) by N◦ is denoted an open polyhedron of self-
intersection points of the mapping d. Denote by N the closure of the poly-
hedron N◦. Denote by U(Ndiag)◦ a small regular deleted neighborhood of the
diagonal Ndiag of the polyhedron N .

Lemma 4. There exists a C0�small PL-deformation i2 ◦ c′1 7→ d such that
for the polyhedron N there exists a resolution map rez : N → RΣ to the
corresponding space of the second row of the diagrams (35). The map µa :
N → K(Ia, 1) (see the equation (9)) is de�ned by the formula µa = φ ◦ rez,
where the mapping φ is de�ned by the formula (31).

The restriction of µa on N◦ ⊂ N determines the reduction of the structural
mapping: iIa,D ◦ µa = η◦ : N◦ → K(D, 1) ( see the formula (22)).

In particular, the mapping µa satis�es the required boundary conditions
over Ndiag and induces a cyclic structure of the extension d(2).

4 Coordinate system angle-momentum on the

spaces of singularities and construction of the

resolution spaces

A preliminary step in the proof of Lemma 4

Let us present the plan of the proof. We start by an explicit description
of the polyhedron Σ◦ and the structural maps η◦ on these polyhedra by
means of coordinates. Then we construct the spaces RΣ, equipped with
maps pr : RΣ→ Σ and φ : RΣ→ K(Ia, 1), which satisfy required boundary
conditions (32).
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The complex strati�cation of polyhedra J, Σ, Σ◦ by means of the
coordinate system angle - momentum

Let us order lens spaces, which form the join, by the integers from 1 up to
r and let us denote by J(k1, . . . , ks) ⊂ J the subjoin, formed by a selected
set of circles (one-dimensional lens spaces) S1/i with indexes 1 ≤ k1 < · · · <
ks ≤ r, 0 ≥ s ≥ r. The strati�cation above is induced from the standard
strati�cation of the open faces of the standard r-dimensional simplex δr under
the natural projection J → δr. The preimages of vertexes of a simplex are
the lens spaces J(j) ⊂ J , J(j) ≈ S1/i, 1 ≤ j ≤ r, generating the join.

De�ne the space J [s] as a subspace of J , obtained by the union of all
subspaces J(k1, . . . , ks) ⊂ J .

Denote the maximum open cell of the space p̂−1(J(k1, . . . , ks)) by
Û(k1, . . . , ks) ⊂ Sn−k/i. This open cell is called an elementary stratum of
the depth (r− s). A point at an elementary stratum U(k1, . . . , ks) ⊂ Sn−k/i
is de�ned by a set of coordinates (x̌k1 , . . . , x̌ks , λ), where x̌ki ∈ S1 is a co-
ordinate on the 1-sphere (circle), covering lens space with the number ki,
λ = (lk1 , . . . , lks) is a barycentric coordinate on the corresponding (s − 1)-
dimensional simplex of the join. Thus if the two sets of coordinates are
identi�ed under the transformation of the cyclic Ia-covering by means of the
generator, which is common to the entire set of coordinates, then these sets
de�ne the same point on Sn−k/i. Points on elementary stratum Û(k1, . . . , ks)
belong in the union of simplexes with vertexes belong to the lens spaces of the
join with corresponding coordinates. Each elementary strata Û(k1, . . . , ks) is
a base space of the double covering U(k1, . . . , ks) → Û(k1, . . . , ks), which
is induced from the double covering RPn−k → Sn−k/i by the inclusion
Û(k1, . . . , ks) ⊂ Sn−k/i.

The polyhedron K◦ = K \ Qdiag is slitted into the union of open sub-
sets (elementary strata) K(k1, . . . , ks), 1 ≤ s ≤ r correspondingly with the
strati�cation

J (r) ⊂ · · · ⊂ J (1) ⊂ J (0), (37)

of the space J . For the considered stratum a number r− s of missed coordi-
nates to the full set of coordinates is called the deep of the stratum.

Let us introduce the following denotation:

J [i] = J (i) \ J (i+1). (38)

The polyhedron Σ◦ is de�ned as the union of K◦ with the antidiagonal
strati�ed subpolyhedron (24) over the common subpolyhedron Qantydiag.

Let us describe an elementary stratum K [r−s](k1, . . . , ks) by means of the
coordinate system. To simplify the notation let us consider the case s = r.
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Suppose that for a pair of points (x1, x2), de�ning a point on K [0](1, . . . , r),
the following pair of points (x̌1, x̌2) on the covering space Sn−k is �xed, and
the pair (x̌1, x̌2) is mapped to the pair (x1, x2) by means of the projection
of Sn−k → RPn−k. Accordingly to the construction above, we denote by
(x̌1,i, x̌2,i), i = 1, . . . , r a set of spherical coordinates of each point. Each
such coordinate with the number i de�nes a point on 1-dimensional sphere
(circle) S1

i with the same number i, which covers the corresponding circle
J(i) ⊂ J of the join. Note that the pair of coordinates with the common
number determines the pair of points in a common layer of the standard
cyclic Ia-covering S

1 → S1/i.
The collection of coordinates (x̌1,i, x̌2,i) are considered up to independent

changes to the antipodal. In addition, the points in the pair (x1, x2) does
not admit a natural order and the lift of the point in K to a pair of points
(x̄1, x̄2) on the sphere Sn−k, is well determined up to 8 di�erent possibilities.
(The order of the group D4 is equal to 8.)

An analogous construction holds for points on deeper elementary strata
K [r−s](k1, . . . , ks), 1 ≤ s ≤ r.

The coordinate description of elementary strata of the polyhedron
K◦ ⊂ Σ◦

Let x ∈ K [r−s](k1, . . . , ks) be a point on an elementary stratum. Consider
the sets of spherical coordinates x̌1,i è x̌2,i, k1 ≤ i ≤ ks of the point x. For
each i the following cases: a pair of i-th coordinates coincides; antipodal, the
second coordinate is obtained from �rst by the transformation by means of
the generator (or by the minus generator) of the cyclic cover. Associate to
an ordered pair of coordinates x̌1,ki and x̌2,ki , 1 ≤ i ≤ s the residue vi of a
value +1, −1, +i or −i, respectively.

When the collection of coordinates of a point is changed to the antipodal
collection, say, the collection of coordinates of the point x2 is changed to the
antipodal collection, the set of values of residues of the new pair (x̄1, x̄2) on
the spherical covering is obtained from the initial set of residues by changing
of the signs. The residues of the renumbered pair of points change by the
inversion. Obviously, the set of residues does not change, if we choose another
point on the same elementary stratum of the space K◦.

Elementary strata of the space K(k1, . . . , ks), in accordance with sets of
residues, are divided into 3 types: Ia, Ib, Id. If among the set of residues are
only residues {+i,−i} (respectively, only residues {+1,−1}), we shall speak
about the elementary stratum of the type Ia (respectively of the type Ib). If
among the residues are residues from the both set {+i,−i} and {+1,−1}, we
shall speak about elementary stratum of the type Id. It is easy to verify that
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the restriction of the structure mapping η : K0◦ → K(D4, 1) on an elementary
stratum of the type Ia, Ib, Id is represented by the composition of a map in the
space K(Ia, 1) (respectively in the space K(Ib, 1) or K(Id, 1)) with the map
ia : K(Ia, 1)→ K(D4, 1) (respectively, with the map ib : K(Ib, 1)→ K(D4, 1)
or id : K(Id, 1) → K(D4, 1)). For the �rst two types of strata the reduction
of the structural mapping (up to homotopy) is not well de�ned, but is de�ned
only up to a composition with the conjugation in the subgroups Ia, Ib.

The polyhedron Σ◦ is de�ned by the union of K◦ with all antidiagonal
strata. On antidiagonal strata the residue of each coordinate is equal to +i.
Antidiagonal strata will be considered as strata of the type Ia. The polyhe-
dron Σ is de�ned from Σ◦ by completion by all elementary diagonal strata
(on each elementary stratum K(k1, . . . , ks) the residue of each coordinate is
equal to +1), of the boundary of the polyhedron. It is easy to check that
Σ \ Σ◦ contains all elementary diagonal strata of deeps ≥ 1.

De�ne the following open subpolyhedra:

KIa◦ ⊂ K◦ ⊂ Σ◦, (39)

KIb◦ ⊂ K◦ ⊂ Σ◦, (40)

KId◦ ⊂ K◦ ⊂ Σ◦ (41)

by the union of all elementary strata of the corresponding type.

Description of the structural map η◦ : Σ◦ → K(D, 1), by means of
the coordinate system

Let x = [(x1, x2)] be a marked a point on K◦, on a maximal elementary
stratum. Consider closed path λ : S1 → K◦, with the initial and ending
points in this marked point, intersecting the singular strata of the depth
1 in a general position in a �nite set of points. Let (x̌1, x̌2) be the two
spherical preimages of the point x. De�ne another pair (x̌′1, x̌

′
2) of spherical

preimages of x, which will be called coordinates, obtained in result of the
natural transformation of the coordinates (x̌1, x̌2) along the path λ.

At regular points of the path λ the family of pairs of spherical preimages
in the one-parameter family is changing continuously, that uniquely iden-
ti�es the inverse images of the end point of the path by the initial data.
When crossing the path with the strata of depth 1, the corresponding pair of
spherical coordinates with the number l is discontinuous. Since all the other
coordinates remain regular, the extension of regular coordinates along the
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path at a critical moment time is uniquely determined. For a given point x
on elementary stratum of the depth 0 of the spaces K◦ the choice of at least
one pair of spherical coordinates is uniquely determines the choice of spheri-
cal coordinates with the rest numbers. Consequently, the continuation of the
spherical coordinates along a path is uniquely de�ned in a neighborhood of
a singular point of the path.

The transformation of the ordered pair (x̌1, x̌2) to the ordered pair (x̌′1, x̌
′
2)

de�nes an element the group D. This element does not depend on the choice
of the path l in the class of equivalent paths, modulo homotopy relation in
the group π1(Σ◦, x). Thus, the homomorphism π1(Σ◦, x)→ D is well de�ned
and the induced map

η◦ : Σ◦ → K(D, 1) (42)

coincides with structural mapping, which was determined earlier. It is easy
to verify that the restriction of the structural mapping η on the connected
components of a single elementary stratum K◦(1, . . . , r) is homotopic to a
map with the image in the subspeces K(Ia, 1), K(Ib, 1), K(Id, 1), which cor-
responds to the type and subtype elementary stratum.

Consider an elementary stratum K [r−s](k1, . . . , ks) ⊂ K
(r−s)
◦ of the depth

of (r − s). Denote by

π : K [r−s](k1, . . . , ks)→ K(Z/2, 1) (43)

the classifying map, that is responsible for the permutation of a pair of points
around a closed path on this elementary stratum. This mapping is called the
classifying mapping for the canonical 2-sheeted covering.

The mapping π coincides with the composition

K [r−s](k1, . . . , ks)
η−→ K(D4, 1)

p−→ K(Z/2, 1),

where K(D4, 1)
p−→ K(Z/2, 1) be the map of the classifying spaces, which is

induced by the epimorphism D4 → Z/2 with kernel Ic ⊂ D4 . The canonical
2-sheeted covering, which is associated with the mapping π, denote by

K̄ [r−s](k1, . . . , ks)→ K [r−s](k1, . . . , ks). (44)

Lemma 5. The restriction of the mapping (43) on each elementary stratum
is homotpic to the composition

π : K [r−s](k1, . . . , ks)→ S1 ⊂ K(Z/2, 1), (45)

where S1 ⊂ K(Z/2, 1) is the embedding of 1-dimensional skeleton of the
classifying space.
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Proof of Lemma 5

Explicit formula for the mapping (45) is required. Let us considered cases of
elementary strata of types Ib, Ia, Id.

An arbitrary point (x1, x2) ∈ K [r−s](k1, . . . , ks) is uniquely determined by
an equivalent class of the collection of the angular and momentum coordi-
nates. Two prescribed pair of angular coordinates beside all pairs of angular
coordinates are described below. Let us de�ne the mapping (43) by two pairs
of angular coordinates, the �rst pair of coordinates has the residue +1, the
second pair has the residue −1.

Correspondingly values of the residues, we shall denote the �rst pair of
prescribed angular coordinates by (x̌1,−, x̌2,−), the second pair of prescribed
coordinates by (x̌1,+, x̌2,+). Each prescribed coordinate x̌1,−, x̌1,+, x̌2,−, x̌2,+

determines the corresponding point on S1. It is easy to check that x̌1,− =
−x̌2,−, x̌1,+ = x̌2,+. Therefore the mappings [(x1, x2)] 7→ x̌1,− (mod − 1),
[(x1, x2)] 7→ x̌1,+ (mod − 1) are well de�ned and, in particular, are not
dependent of an order of the points in the pair.

Denote the product x̌1,− · x̌1,+ of two points on S1 by x̌. The mapping
(x1, x2) 7→ x̌ (mod − 1) ∈ S1/ − 1 is well de�ned. This mapping is the
restriction of the required mapping (45) on the stratum of type Ib.

Assume that a point (x1, x2) ∈ K [r−s](k1, . . . , ks) belongs to the stratum
of the type Ia (including antidiagonal strata). The mapping (43) is uniquely
determined by a transformation of the two prescribed pairs of angular coor-
dinates with residues −i, +i.

Residues of a pair of the prescribed coordinates are well de�ned, let us
denote the �rst pair of the prescribed coordinates by (x̌1,−i, x̌2,−i) and the
second pair of the prescribed coordinates by (x̌1,+i, x̌2,+i). It is not hard to
check that ix̌1,− = x̌2,−, ix̌1,+ = x̌2,+. The mapping [(x1, x2)] 7→ (x̌1,+i)

2

(mod − 1) is well de�ned. This mapping is the restriction of the required
mapping (45) on the stratum of type Ia.

Assume that a point (x1, x2) ∈ K [r−s](k1, . . . , ks) belongs to the stratum
of the type Id The mapping (43) is homotopic to the constant. Let us de�ne
this mapping by the following formula. Take a coordinate system such that
there exist the prescribed pair of angular coordinates with the residue +i.
Denote this prescribed pair of coordinates by (x̌1,+i, x̌2,+i). The mapping
[(x1, x2)] 7→ (x̌1,+i)

2 (mod − 1) is the restriction of the required mapping
(45) on the stratum of type Id.

Lemma 5 is proved.
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Free involution of the polyhedron K◦

Let us consider the polyhedron K◦, which is de�ned by the formula (25).
De�ne a free involution

TK◦ : K◦ → K◦, (46)

which transforms neighborhoods of the diagonal and of the antidiagonal
it they selfs. De�ne the involution (46) by the formula TK◦(x̌1, x̌2, λ) =
(ix̌1, ix̌2, λ).

Real (double) strati�cation of the polyhedron J

Let us consider the polyhedron J (the standard sphere) and the strati�cation
of this polyhedron, which is de�ned by the formula (37). For each elemen-
tary stratum of this strati�cation let us de�ne an additional strati�cation.
This (double) strati�cation is called the real strati�cation. Let us re-denote
J (r−s)(k1, . . . ks) by J (r−s,0)(k1, . . . ks) and consider on J (r−s,0)(k1, . . . ks) the
"`angle-momentum"' coordinate system. Let us de�ne the following strati�-
cation

J (r−s,s)(k1, . . . ks) ⊂ J (r−s,s−1)(k1, . . . ks) ⊂ · · · ⊂ J (r−s,0)(k1, . . . ks), (47)

which consists of a family of embedding polyhedra of codimension 1. Denote
by J (r−s,i)(k1, . . . ks) the subpolyhedron in J (r−s,0)(k1, . . . ks) of all points,
such that not less then i points are equal to +1. Denote the polyhedron
J (r−s,i)(k1, . . . ks) \ J (r−s,i+1)(k1, . . . ks) by J [r−s,i](k1, . . . ks). It is not dif-
�cult to check that the polyhedron J [r−s,i](k1, . . . ks) is the disjoin union
of connected strata of the strati�cation (47), for each connected strata of
J [r−s,i](k1, . . . ks) the collection of i (singular) angular coordinates is �xed,
each coordinate from this collection is equal to +1 or to −1, the last (reg-
ular) coordinates could be arbitrary in S1 \ {+1,−1}. Angular singular
coordinates are called auxiliary, regular angular coordinates are called prin-
cipal. In particular, for points in J [r−s,r−s](k1, . . . ks) all angular coordinates
are auxiliary.

Real (double) strati�cation of the polyhedron K◦

Recall that an elementary stratum

K [r−s](k1, . . . , ks) (48)

is de�ned as the inverse image of the elementary stratum J [r−s](k1, . . . , ks)
by the natural projection of a singularity on its image. Let us de�ne the
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following strati�cation

K [r−s,i](k1, . . . , ks) ⊂ K [r−s]
◦ ⊂ K◦ (49)

of an arbitrary elementary stratum of the type Ib as the strati�cation, which
is induced from the strati�cation (47) by this natural projection.

For an arbitrary connected stratum of the polyhedron K [r−s,i](k1, . . . ks)
a collection of i pairs of (singular) angular coordinates are �xed. Each coor-
dinate in a pair of the collection takes one of the following two pairs of values
{+1,−1}, {+i,−i}; this singular coordinates are called auxiliary. Hence, the
auxiliary coordinates are divided into real and imaginary. The last (regular)
coordinates are called principal.

An pair of principle coordinates takes the value from one of the two
intervals (0, π

2
) ∪ (π, 3π

2
), or from one of the two intervals (π

2
, π) ∪ (3π

2
, 2π).

The involution (46) changes each imaginary (real) coordinate into real
(imaginary), this involution acts free on the set of elementary strata of the
strati�cation (49). Strata are divided into pairs, the involution (46) changes
the two strata in a pairs.

Prescribed coordinate system of a real strati�cation (49) of the
polyhedron KIb◦

Let us recall that the space KIb◦ is decomposed into the union of closures
Cl(K [r−s,i](k1, . . . , ks)), 0 ≤ s ≤ r of strata of the real strati�cation (49) (the
closures are considered into the spaceK◦). Recall that residues of coordinates
take values into {+1,−1}.

On each elementary stratum of the strati�cation (49) let us de�ne a pre-
scribed coordinate system. This prescribed coordinate system is de�ned in
a marked point x = ([x1, x2]) by the ordered pair of the spherical preimages
(x̌1, x̌2) up to the transformation (x̌1, x̌2) 7→ (−x̌1,−x̌2). In particular, the
equivalent class of a prescribed coordinate system is well de�ned with respect
to transformations (x̌1, x̌2) 7→ (x̌2,−x̌1), this transformation is given by the
action of the generator of the subgroup Ia ⊂ D on the coordinates of the
point x ∈ KIb◦. The involution (46) transforms the prescribed coordinate
system on an elementary stratum into a coordinate system on the image of
this elementary stratum. The prescribed coordinates has to be invariant with
respect to this transformation.

The prescribed coordinate system on the stratum of the strati�ca-
tion (48) of the polyhedron KIa◦ ∪ Σantidiag

Let us recall that the space KIa◦ ∪ Σantidiag is decomposed into the union of
closures Cl(K [r−s](k1, . . . , ks)), 0 ≤ s ≤ r of strata of the strati�cation (48)
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(the closures are considered into the space K◦; antidiagonal strata are also
possible). Recall that residues of coordinates take values into {+i,−i}.

On each elementary stratum let us de�ne a prescribed coordinate system
such that the number of residues, which is equal to −i, is not less then half
number of residues. In the case when the half of residues are equal to +i and
the last half of residues are equal to −i, the prescribed coordinate system
is �xed such that the value of the residue of the coordinate of the smallest
number is equal to +i. This rule is considered for antidiagonal strata.

The involution (46) transforms the prescribed coordinate system on an
elementary stratum into a coordinate system on the image of this elemen-
tary stratum (recall that on the anti diagonal stratum this transformation is
�xed). The prescribed coordinates has to be invariant with respect to this
transformation. A prescribed coordinate system is uniquely de�ned up to
the transformation (x̌1, x̌2) 7→ (x̌2,−x̌1). The prescribed coordinate system
on a stratum of (49) is de�ned by the restriction of the prescribed coordinate
system of (48).

The prescribed coordinate system on the stratum of the strati�ca-
tion (48) of the polyhedron KId◦

Let us recall that the space KId◦ is decomposed into the union of closures
Cl(K [r−s](k1, . . . , ks)), 0 ≤ s ≤ r of strata of the strati�cation (48) (the
closures are considered into the spaceK◦). Recall that residues of coordinates
take values into {+i,−i,+1,−1}.

On each elementary stratum let us de�ne a prescribed coordinate system
such that the number of residues, which is equal to −i, is not less then half
number of residues, which take the values in {+i,−i}. In the case when the
half of the considered residues are equal to +i and the last half of residues
are equal to −i, the prescribed coordinate system is �xed such that the value
of the residue of the coordinate of the smallest number is equal to +i. A
prescribed coordinate system is uniquely de�ned up to the transformation
(x̌1, x̌2) 7→ (x̌2,−x̌1). The prescribed coordinate system on a stratum of (49)
is de�ned by the restriction of the prescribed coordinate system of (48).

Allowable pairs of strata

For an arbitrary elementary stratum β ⊂ K [r−s,i](k1, . . . , ks) of the polyhe-
dron K◦ let us consider all smallest elementary strata, which belong to the
boundary of the closure Cl(K [r−s,i](k1, . . . , ks)).
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Let us consider an elementary stratum α ⊂ Cl(α) ⊂
Cl(K [r−s,i](k1, . . . , ks)), α 6= β. Write α ≺ β for short. Let us re-
strict the prescribed coordinate system of β to the stratum α. Assuming
the restricted coordinate system of β on α is equivalent to the prescribed
coordinate system on α itself, we shall call that the pair α ≺ β is allowable.
Oppositely, if the restricted coordinate system of β on α is equivalent to the
prescribed coordinate system on α itself, we shall call that the pair α ≺ β is
not allowable.

Let us consider more details. The pair α ≺ β is allowable, if the following
condition is satis�ed. Let a = (a1, a2) ∈ α, b = (b1, b2) ∈ β; (ǎ1, ǎ2), (b̌1, b̌2)
are the prescribed coordinate systems at the corresponding points. This two
systems are related by means of a one of the following transformations:

(b̌1, b̌2) 7→ ±(b̌1, b̌2) = (ǎ1, ǎ2), (50)

(b̌1, b̌2) 7→ ±(b̌2, b̌1) = (ǎ1, ǎ2), (51)

(b̌1, b̌2) 7→ ±(−b̌1, b̌2) = (ǎ1, ǎ2), (52)

(b̌1, b̌2) 7→ ±(b̌2,−b̌1) = (ǎ1, ǎ2). (53)

Let us assume that β is a stratum of the type Ib. Then α is a stratum of the
same type. Assume that the both strata are inside a common elementary
stratum of the strati�cation (48). In this case transformations (50), (51) are
possible. Transformations of the type (50) preserve the prescribed coordinate
systems, in this case the considered pair of the strata is allowable. Trans-
formation of the type (51) change the prescribed coordinate systems, in this
case the considered pair of the strata is not allowable.

Let us assume that β is a stratum of the type Ia. Then α is a stratum of
the same type. The considered pair of strata is a pair of neighbor strata of
the strati�cation (48). Transformations of all types are possible. Transfor-
mations of the types (50), (53) preserve the prescribed coordinate systems,
in this case the pair of the considered strata is allowable. Transformations
of the type (51), (52) change the prescribed coordinate systems, in this case
the pair of the considered strata is not allowable.

Let us assume that β is a stratum of the type Id. Then α is a stratum
of any possible type. Assume that α is the stratum of the type Ia. Then
the considered pair of strata is a pair of neighbor strata of the strati�ca-
tion (48). Then the pair α ≺ β is allowable and the transformation of the
type (50) is only possible. Assume that α is the stratum of the type Ib, or
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Id. Then transformations of an arbitrary type are possible. In the case α
is of the type Id, the considered pair of strata is a pair of neighbor strata
of the strati�cation (48). Transformations of the types (50), (53) preserve
the prescribed coordinate systems, in this case the pair of the considered
strata is allowable. Transformations of the type (51), (52) change the pre-
scribed coordinate systems, in this case the pair of the considered strata is
not allowable.

The space Y◦

For an arbitrary pair α ≺ β, let us de�ne an open conical ε-neighborhood
of the stratum β ⊂ K [r−s,i](k1, . . . , ks) ⊂ Σ◦, which we will denote by
C(α, β; ε) ⊂ α.

The cone of the (smallest) strata α inside β is de�ned as an open domain,
which is the open cone (of a small height ε) over the interiors of the closure
of the union of all smallest open cones, which belong to Cl(β). Let us denote
by Con′(α, β; ε) the cone of the stratum α in the stratum Cl(β).

In the case α ≺ β of the codimension 2 by means of the strati�cation (48),
or in the case of the codimension 1 by means of the strati�cation (49), we
shall call the cone Con′(α, β; ε) is elementary. An elementary cone of (48) is
de�ned by means of the cone inside the standard simplex of the momentum
coordinates. An elementary cone of (49) is de�ned by means of the cone inside
the standard Rr, determined locally angle coordinates. In a general case a
non-elementary cone is de�ned by the corresponding sequence of elementary
cones.

For an arbitrary elementary cone Con′(α, β; ε) let us de�ne the cor-
responding elementary ε�cone. Let us denote this elementary ε�cone by
Con(α, β; ε). The coordinates on Con(α, β; ε) are divided into degenerate
and non-degenerate. The non-degenerated coordinates coincide with non-
degenerate coordinates of the cone Con′(α, β; ε). The degenerate coordi-
nates are all the last angle-momentum coordinates, such that an arbitrary
degenerate coordinate is ε�small. This means that a degenerate angle co-
ordinate takes a value in the interval (0, ε), (or in the interval (−ε, 0)) up
to an additive constant ±π

2
, or +π. A degenerate momentum coordinate

takes a value in the standard ε�neighborhood of the corresponding face (this
face is associated with the momentum coordinates on β) of the standard
r-simplex of the all momentum coordinates. By the construction we get
Con′(α, β; ε) ⊂ Con(α, β; ε).

For an arbitrary pair of strata α ≺ β0 let us de�ne the conical ε�
neighborhood

C(α, β0; ε) = Cl(∪j,j 6=0Con(α, βj; ε)), (54)
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as the union of closures of all elementary strata α ≺ βj ≺ β0, βj 6= β0.
Evidently, if α ≺ β1 ≺ β0, then C(α, β0; ε) ⊂ C(α, β1; ε), because in the
stratum β0 one has additional restrictions for degenerate coordinates of the
stratum β1, which are non-degenerate on the stratum β0.

Let us de�ne the polyhedron Y◦(ε) as the result of a removal from Σ◦ of
conical ε�neighborhoods of all non-allowable pairs of strata. By construction
Y◦(ε) is obtain from Σ◦ by the removal of an open polyhedron. Therefore the
polyhedron Y◦(ε) is closed into Σ◦.

The value ε in the presented construction is not important, because the
homotopy type of the space Y◦(ε) is not dependent on ε, if ε is small enough.
Let us modify the construction, such that the modi�ed construction is inde-
pendent on ε.

Let us consider the polyhedron Σ◦ ⊂ Γ◦ and let us de�ne by X(ε, ε1)◦ a
small regular ε1�neighborhood of the subpolyhedron Y◦(ε) ⊂ Σ◦ ⊂ Γ◦.

Evidently, the inclusion

Y◦(ε) ⊂ X◦(ε, ε1). (55)

is well de�ned and for 0 < ε1 << ε << 1 this inclusion is a homotopy
equivalence.

Let us de�ne the following space

Y◦ = lim
ε→0,ε1→0

X◦(ε, ε1), (56)

where the direct limit is taken for 0 < ε << ε1.

De�nition of the subspace RΣ in Lemma 3

De�ne the space RΣ as a subspace in Σ, which is de�ned as the result of the
union of the space Y◦ (see the formula (56)) with the subspace Qdiag ⊂ Σ.

The boundary subspace RQdiag of the resolution space RΣ and the
subspaces RN ⊂ RΣ, RN ⊂ RΣ

Let us de�ne the boundary subspace RQdiag ⊂ RΣ, which is used in the
diagram (32). Let us de�ne RQdiag = (Qdiag ∩ RΣ) ⊂ RΣ. Let us de�ne
RΣ◦ = RΣ \ Qdiag. Let us de�ne the subspaces in the formula (28) by the
following formula: RN = RΣ, RL = U(RQdiag).
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Resolution mapping φ◦ : RΣ◦ → K(Ia, 1), proof of Lemma 3

Let us restrict the structural mapping η◦, which is given by the formula
(23), on the subspaces YIb ∩ RΣ, YIa ∩ RΣ, YId ∩ RΣ, Σantidiag ∩ RΣ. All
this restrictions are homotopic to a mapping into the subspace K(Ia, 1) ⊂
K(D, 1). The mapping κ : U(RQdiag) → K(Id, 1) ⊂ K(Ia, 1) is well de�ned
The required mapping φ : RΣ◦ → K(Ia, 1) is de�ned as the result of the
gluing of the considered mappings on the subspaces. Evidently, the boundary
conditions, given by the diagram (32) is satis�ed. Lemma 3 is proved.

The last step of the proof of Lemma 4; the deformation i2 ◦ c′1 7→ d

Let us consider the sphere J ⊂ Rn inside the hyperspace of the codimension
4: J ⊂ Rn−4 ⊂ Rn. Let us consider the cylinder J × I ⊂ Rn−4× I ⊂ Rn× I.

Let us denote the standard projection Rn → Rn−4 by proj. Let us decom-
posed the space Rn as the Cartesian product: C2×Rn−4 ∼= Rn, in particular,
the �ber of the projection proj is equipped with the complex structure.

The standard projection of the regular neighborhood U(J) of the sphere
J ⊂ Rn on the central sphere iJ : J ⊂ Rn was denoted above by projJ . Let us
decomposed the projection projJ : U(J)→ J into the following composition:
projJ = proj1 ◦ proj|U(J), where the projection proj (on the codimension 4)
was de�ned above, the projection proj1 : Rn−4 ∩ U(J) → J is the standard
projection (of the codimension n− k − 4).

Recall that the deformation i1 ◦ c 7→ c′ was constructed as a projJ�
vertical generic projection inside the subspace Rn−4 ⊂ Rn. In the denotations
introduced above this deformation is a proj1�vertical generic deformation.

Lemma 6. Assuming the dimensional restriction (2), there exists an arbi-
trary C0�small deformation τ : c′ 7→ d (the mapping d is the required mapping
in Lemma 2,A), such that the following condition (Ñ) is satis�ed:

(C) for a suitable values 0 < ε1 << ε << 1 the polyhedron N◦ of self-
intersection points of the mapping d is contained inside a small regular neigh-
borhood X◦(ε, ε1) of the polyhedron Y◦, which was de�ned by the formula (8).

Proof of Lemma 61

The strati�cation (48) of the polyhedron Σ◦, which is agree with (37) by
the projection proj1 is well de�ned. Additionally, the strati�cation of the
subpolyhedron KIb◦ ⊂ Σ◦ is well de�ned. Denote by T (Σ

[s]
◦ ) the tangent

1this proof was discussed at the topological seminar of Prof. S.A.Bogaty
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space to the corresponding stratum of the deep s of the strati�cation (38),

inside which the considered stratum Σ
[s]
◦ is projected by proj1.

In each point y ∈ Σ
[s]
◦ de�ne an orthogonal to T (Σ

[s]
◦ ) complex vector

space R(y)[s] of real dimension 2(s + 2). The space R(y)[s] de�ne as the

direct sum R1(y)⊕R[s]
2 (y), where R1(y) is the vector space of real dimension

4, parallel to the subspace 2 in the �ber of the projection proj, R
[s]
2 (y) is the

complex vector space of real dimension 2s which is parallel to the tangent
space T (J) of the sphere (this tangent space is embedded into the image

of the projection proj) and orthogonal to T (Σ
[s]
◦ ). For an arbitrary point

y ∈ Σ
[s]
◦ the complex vector spaces R1(y), R

[s]
2 (y) are uniquely de�ned.

The standard base of the complex vector space R
[s]
2 (y), associated with

the spaces, which are orthogonal to the strata (37) of J (the number of a

basis vector corresponds to the deep of the stratum). At a point y ∈ Σ
[s]
◦ let

us de�ne a complex linear subspace E(y)[s] ⊂ R(y)
[s]
2 . The family of complex

linear subspaces E(y)[s], which are indexed by points y have to satis�ed the
following condition.

The space E(y)[s] in de�ned by the common linear combination of the vectors
of the standard basis of the space R(y)[s], i.e. independently of a choice of
the point y at the given stratum α of the deep s of the strati�cation (48).
( The construction of the family {E(y)[s]} is given by an induction over the
deep s. Therefore instead of E(y)[s] we shall write E[s](α) of E(α).

Let us de�ne the space E(α)[s], assuming, that the family of the spaces
on strata of the less deep is de�ned. Let y be a point on the stratum α of
the deep s, and assume that this point is outside of deepest strata of the
strati�cation (48). For the point y let us consider a sequence of s points

{xi ∈ βi}, 0 ≤ i ≤ s− 1, (57)

which satisfy the following relation:

α ≺ βs−1 ≺ · · · ≺ βi+1 ≺ βi ≺ · · · ≺ β0.

In this formula the stratum α is replaced by βs, if the case i = s is also
possible.

Let us de�ne a parameter ind, which depends of a sequence (57) and
for the given sequence takes s di�erent values, which is parametrized by a
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positive integer parameter j, 0 < j ≤ s. The space E(α)[s] is transversal to
each space of the following collection of complex subspaces {F (α; ind) of the
space R[s], the real dimension of the corresponding space satisfy the equation
dim(F (α; ind)) = 2(s+1) (in particular, F (α; ind) ⊂ R[s] is a complex vector
subspace of the codimension 1):

F (α; ind) = ⊕j−1
i=0E(βi)

[i] ⊕ T (α, βj−1), j = s, . . . , 1. (58)

In this formula the complex vector space T (α, βj−1) of the real dimension
2(s − j + 1) is uniquely de�ned for 0 < j ≤ s as a complex vector subspace
at the point y is in the orthogonal complement to α inside the tangent space
of βj−1. For j = 1 the complex line E(β0)[0] is a subspace inside R1(β0), this
line space will be denoted below by E[0], because this is the common space
for strata of the deep 0.

The proof of the existence of the collection of the linear vector spaces
satis�ed the prescribed conditions can be proved by the dimension arguments.
This proof is omitted.

Evidently, strata of the double strati�cation (49) is partial ordered with
respect to the relation ≺. Therefore we may say about the deep of a stratum
of the strati�cations (49) and (48) of the polyhedron of self-intersection. The
maximal deep of strata of the strati�cation (49) is 2r. The maximal deep of
strata of the strati�cation (48) is r.

Let us re-denote f ′ by f0. Let us de�ne a sequence of in�nitesimal
numbers δ0, . . . , δ2r (r is the maximal deep of a strata in T (J)), such that
δi+1 = o(δi). De�ne a sequence of C0�in�nitesimal PL�deformations:

f0 7→ f1 7→ . . . 7→ f2r (59)

with a support into the regular neighborhood of the diagonal U(Qdiag), the
C0�caliber of the deformation fi−1 7→ fi is equal to (in�nitesimal small) num-
ber δi. This sequence of in�nitesimal small deformations one could considered
like a sequence of PL�deformations, each next deformation is so C0�small,
then the properties of the mapping from the previous step of the construction
are preserved.

The deformation on the step i, 0 ≤ i ≤ 2r is de�ned with a support on
strata of (49) of the deep i and is �xed on strata of the deep i + 1. Let α
be an arbitrary stratum of the deep i and let α ≺ βi−1 ≺ . . . β1 ≺ β0 is an
arbitrary sequence of strata. The following sequence of inclusions

C(α, βi−1; δi) ⊃ · · · ⊃ C(α, β0; δi)

is well de�ned. The deformation inside the union of elementary cones
C(α, βi−1; δi)∩(Con′(α, βi−1; δi)∪j=i−1,...,1Con

′(βj, βj−1; δi)) (near α) is along
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the vector space E(α)⊕E(βi−1)⊕ . . . E(β1)⊕E(β0). Deformations on pairs
of elementary strata β, β′, β′′ ≺ β, β′′ ≺ β′ are agree on β′′.

Finlay, the resulting mapping f2r has only self-intersection points (outside
a neighborhood of the diagonal), which are inside a regular neighborhood
of the polyhedron RΣ◦ ⊂ X◦(ε, ε1), determined by the formula (8). The
parameters ε, ε1 satisfy the following relation ε1 << ε << δ2r (see the
condition (C) in the statement of the lemma).

At the �rst step the deformation f0 7→ f1 is a deformation with the
support on Σ

[0]
◦ , this deformation is �xed on Σ

(1)
◦ .

This deformation is vertical with respect to the linear complex space E[0]

over each point at elementary strata α ⊂ K [0,0](k1, . . . kr) of the space Σ
[0]
◦

(below we introduce the only index for strata of (49) as the sum of the
indexes).

Let us consider the line bundle lα : D(lα) → α (with the standard seg-
ment as the �ber), associated with the canonical 2-sheeted covering over
the considered elementary stratum. In Lemma 5 a �berwise monomorphism
ψα : D(lα) ⊂ α × E[0]

α (below we say Z/2�section for short) into the trivial
line complex S1�bundle over α. The bundle lα for strata of all types are
classi�ed by the corresponding mapping, which is de�ned in this lemma).
The monomorphism ψα determines a C1�small deformation f0 7→ f1 (a re-
projection of self-intersection points along the �ber ψ over the family of
elementary strata of the deep 0).

Let us extend by linearity the considered deformation into C1�
in�nitesimal deformation over the space RPn−k, which is �xed on self-
intersection points on Σ

[0]
◦ .

The a C1�in�nitesimal deformation f1 7→ f2 on Σ
(1)
◦ is de�ned as the

previous step along the prescribed linear (complex) �ber over each stratum of
the deep 1. De�ne a C0�in�nitesimal crosslinking of mappings f1 with f2 and
let construct the deformation f1 7→ f2 (the mapping f2 and the deformation

f1 7→ f2 are de�ned only on Σ
(1)
◦ ). Let us consider a stratum α of the deep

1 and a stratum β of the deep 0, such that α ≺ β. This pair of strata could
be admissible and non-admissible, correspondingly to the formula (50)-(53)
and to various type of neighbor of strata in (49). .

Let us de�ne the deformation f1 7→ f2 near each conical neighborhood
C(α, β; δ1) of the greater stratum β of the deep 0 in the case of non-admissible
pair α ≺ β. For a maximal stratum of the deep 0 the conical neighborhood
C(α, β; δ1) coincides with the cone Con(α, β; δ1). For an admissible pair
α ≺ β the deformation inside the prescribed linear space could be arbitrary.
The mapping f2 outside the union of all cones of admissible pairs, generally
speaking, could have self-intersection points inside X(ε, ε1).
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Assume that the pair of strata α ≺ β is non-admissible and this strata are
inside the common elementary stratum of (48). Let us consider the trivial
complex bundle with the �ber E[0] over the cone Con(α, β; δ1) and let us
de�ne a new trivialization of this bundle. Describe �rst the new trivialization
over the boundary of the cone. On the component of the boundary of the
cone inside α, which is contractible, the new trivialization is related with
the standard trivialization by the central symmetry. On the component
of the boundary of the cone inside β, which is also contractible, the new
trivialization is the standard trivialization. Let us �x a trivialization of the
bundle over the elementary cone Con◦(α, β; δ1) with the prescribed boundary
conditions.

Assume that the pair of strata α ≺ β is non-admissible and this strata
are a neighbor strata of (48). Let us consider the trivial complex bundle over

Con(α, β)◦ with the �ber E
[1]
α ⊕E[0]. Let us consider Z/2�sections, which are

associated with the canonical covering over the corresponding components
of the boundary of U(α, β)◦ is the strata E

[1]
α , E[0], constructed in Lemma

5). The boundary conditions are extended to a Z/2�section of the bundle

E
[1]
α ⊕E[0] over C ′(α, β)◦ by linearity. A crosslinking of the mapping f2 with

the mapping f1 by means of a deformation f1 7→ f2 for an arbitrary non-
admissible pair of strata α and β is well de�ned by means of the Z/2�cross
sections over the collection of elementary cones C ′(α, β)◦. The mapping f1 in
a neighborhood C ′(α, β)◦ is deformed along the vector space E[0] ⊕ E[1](α),
or along the line space E[0], as described above.

Assume that the pair of strata α, β are admissible. De�ne the deformation
f1 7→ f ′1 in a neighborhood of each elementary cone along the prescribed
vector spaces arbitrary. The intersection points outside strata of the deeps
not less then 2 belong to X(ε, ε1). The mapping f2 on the strata of the deep
0 and 1 is constructed.

Let us describe a C0�in�nitesimal deformation of the mapping f2 into a
mapping f3. Supports of all mappings and deformations are in neighborhoods
of pairs of strata of the deeps 0 and 2, and of the deep 1 and 2. By this
deformation in each conical neighborhood (α, β; δ2) for a nonadmissible pair
of strata there are no self-intersection points.

The main observation using in this construction is following. Let us as-
sume that a stratum α is in the closure of boundaries of strata β and β′ (deeps
of the strata β and β′ could be arbitrary), then (α, β; δ2) ∩ (α, β′; δ2) = ∅
and, therefore, if α ≺ β1 ≺ β, α ≺ β1 ≺ β′, then α ≺ β1 is admissi-
ble (and self-intersection points of β near α could exist), or the both pairs
β1 ≺ β, β1 ≺ β′ are admissible (and self-intersection points of β near β1

and self-intersection points of β′ near β could exist. In the opposite case, if
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(α, β; δ2)∩ (α, β′; δ2) 6= ∅, then up to the re-indexation of strata the following
inclusion β′ ≺ β is well de�ned, in this case the considered pair of strata
is admissible and, therefore, self-intersection points on (α, β; δ2) ∩ (α, β′; δ2)
could exist.

The following 2 cases of non-admissible pair of strata β0 of the deep 0
(case 1), or 1 (case 2) and α of the deep 2 are possible. In the case 1 the
following 3 subcases are possible: a neighboring of a stratum of the deep 0
in the strati�cation (49) (the subcase (1, 1)); a neighboring of a stratum of
the deep 2 in the strati�cations (49) and the strati�cation (48) (the subcase
(1, 2)); a neighboring of a stratum of the deep 2 in the strati�cation (48) (the
subcase (1, 3)). In the case 2 the following 4 subcases are possible: a neigh-
boring of a stratum of the strati�cation (49) of the deep 1 with a stratum of
the strati�cation (49) of the deep 2 (the subcase (2, 1)); a neighboring of a
stratum of the strati�cation (49) of the deep 1 with a stratum of the strati-
�cation (49) of the deep 2 (the subcase (2, 2)); a neighboring of a stratum of
the strati�cation (48) of the deep 1 with a stratum of the strati�cations (48)
and (49) of the deep 2 (the subcase (2, 3)); a neighboring of a stratum of the
strati�cation (48) of the deep 1 with a stratum of the strati�cations (48) of
the deep 2 (the subcase (2, 4)). Proofs in all cases are analogous.

Let us consider the case of non-admissible pair of strata α of the deep
2 and β0 of the deep 0. Let β1 be an arbitrary stratum of the deep 1,
α ≺ β1 ≺ β0. Let α and β1 are admissible (in this case f3 could have
self-intersection points on beta1 near α). Then the pair β1 and β0 is non-
admissible. Let us consider the standard auxiliary deformation f2 7→ f ′2 in
the neighborhood C(α, β0; δ2) \ C(β1, β0; ε) along the �ber E(β).

Let us assume that the pair (α, β1) is non-admissible. Then the pair
(β1, β0) is admissible. Let us consider an axillary deformation f2 7→ f ′2 in the
neighborhood C(α, β0; δ2) \ U(β1; ε), where U(β1; ε) is a ε�neighborhood of
the stratum β inside Σ◦. The considered auxiliary deformation is well-de�ned
along the �ber E(β), by this deformation in the considered neighborhood the
mapping f ′2 is de�ned by the standard formula along E(β0). In the both cases
the deformation f ′2 7→ f3 is de�ned in the considered neighborhood as at the
�rst step of the construction.

Let us consider the case of non-admissible pair of strata α of the deep 2
and β1 of the deep 1. Let β0 be an arbitrary stratum of the deep 0, such
that the pair β1 ≺ β0 is non-admissible (and, therefore, the pair α ≺ β0 is
admissible. Let us consider the subcase (2, 4). The deformation f2 7→ f3

inside the subspace E(α)⊕E(β1)⊕E(β) in the neighborhood C(α, β1; δ2)∩
C(β1, β; δ2) is de�ned by linearity.

Let y ∈ α is a point on a stratum α of the deep 2. Let us consider the
sphere S(y, ε) with the center at y of the radius ε, this sphere has no points

29



of deepest strata inside. Let us consider the intersection S(y, ε)∩Im(f1). By
the construction, the space S(y, ε) ∩ Im(f1) is inside the subspace (T (α) ⊕
T (α, β)⊕ E[0]) ∩ S(y, ε), where

T (α) is the tangent space to the stratum α,
T (α, β) is the orthogonal complement of the stratum α of the deep 2 in

the stratum β of the deep 0, α ≺ β,
E[0] is the prescribed linear space, along this space the deformation f0 7→

f1 on the stratum β was constructed at the previous step.
The spaces E[2](α) ∩ S(y, ε) and S(y, ε) ∩ Im(f1) have no intersections.
The constant δ2 has to be small enough, such that the following property

is satis�ed. Let us consider the intersection A = S(y, ε)∩Im(f2(C(α, β; δ2)∩
C(β1, β; δ2))). The space A is inside a su�ciently small neighborhood (note
the metric on the sphere is the standard metric of the unite sphere) the
diameter of the considered neighborhood is determined by the constant δ2

and by the thickness of conical neighborhoods of the stratum of the deep 1
inside the stratum of the deep 0) of the vector space:

T (α)⊕ E(α, β1)⊕ E[1](β1)⊕ E[0] (60)

� T (α) is the tangent space to a stratum of the strati�cation of J , that
contains the stratum α of the deep 2, z ∈ α;

�T (α, β1) is the orthogonal complement of α in β1;

�E[1](β1) is the linear space of the prescribed collection of spaces, along
this space the deformation f1 7→ f2 on the stratum β1, β1 ≺ α, of the deep 1
was constructed on the previous step;

�E[0] is a linear space of the prescribed collection, along this space a de-
formation on a stratum of the deep 0 near α was constructed on the previous
step.

The deformation f2 7→ f3 on the stratum α is de�ned along the complex
linear space E[2](α), which is transversal to the vector space (60). Therefore
this direction of the deformation on α is transversal to the image Im(f2) of
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the polyhedron. The deformation f2 7→ f3 itself is de�ned by linearity along
the momentum coordinates on strata of less deeps near α, as at the previous
step of the construction. The subcase (2, 3) is considered.

In the last cases the deformation f2 7→ f3 is de�ned analogously to the
deformation f1 7→ f2 of the previous step. In the subcases (2, 2) and (2, 3)
the formula of the resulting mapping is obvious.

By the construction, the mapping f3 has no self-intersection points in a
neighborhood of an arbitrary non-admissible pair of strata of the deeps 0 and
1, of the deeps 1 and 2, and of the deeps 0 and 2. Self-intersection points
near the considered pairs of strata exist on strata of the deep not less then
3. Evidently, that the mapping f3 satis�es the condition (C) outside strata
of the deeps not less then 3. The deformation f2 7→ f3 is well-de�ned.

Let us assume that the mapping fi−1 is well-de�ned and the deformation
fi−1 7→ fi was de�ned inside δi�neighborhood of strata of the deep i − 1
outside the δi+1�neighborhood of strata of the deep i.

An auxiliary C1-in�nitesimal deformation fi−1 7→ fi is de�ned on Σ
[i]
◦ ,

�xed on Σ
(i+1)
◦ . This deformation is along the linear complex space E(x)[i]

over elementary strata of the space Σ
[i]
◦ . Then this deformation is extended

to a C0�in�nitesimal deformation over the space RPn−k, which is �xed on
Σ

(i+1)
◦ .
Assume that α is a stratum of the deep i and a pair of strata α ≺ β1

is non-admissible. Let us consider all strata β2, . . . , which is contained in
the closure of the boundary of the stratum β1, such that the pair with β1 is
non-admissible, and, therefore, the corresponding pair with α is admissible.
Let us consider all strata β, . . . , which is contained in the closure of the
boundary of the stratum β1, such that the pair with β1 is admissible, and,
therefore, the corresponding pair with α is non-admissible. The mapping fi
has no self-intersection points near α in all neighborhoods of non-admissible
pairs, on exterior components of the boundaries the mapping fi coincides
with fi−1.

An axillary deformation is constructed. Generally speaking, self-
intersection points on strata β2, . . . near the stratum α, such that the corre-
sponding pair with β1 is admissible, are possible.

Then all the formulas of the deformations of pairs of strata have to be
trivialized. At the last step the required mapping fi, using the formula as in
the subcase (2, 4) is constructed. The required properties of the mapping fi
follows from the construction. Lemma 6 is proved.
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Proof of Lemma 2A

The mapping into the right space of the diagram (8) de�nes the required
mapping rez in Lemma 4, which satis�es the boundary conditions and de-
termines the reduction of the structural mapping. Lemmas 4 and 2A are
proved.

5 Proof of Lemma 2B

Let us prove Lemma 3, assuming the dimensional restrictions (3). Let us
construct the classifying space, which will be denoted again by RΣ.

Let us consider the mapping c′1 which is de�ned, assuming dimensional
restrictions (3), the same way that in the case of the dimensional restric-
tions (2), considered above. The mapping c′1 could have only self-intersection
points of multiplicities 2,3, or 4 (because c′1 is generic, this map have no self-
intersection points of the multiplicity 5 and greater).

Let us denote by

L ⊂ N (61)

the polyhedron of self-intersection points [(x, y)], for which at least one of
the two points x ∈ N̄ , or y ∈ N̄ is a critical point of c′1. Obviously, we have
∂N ⊂ L, let us denote (∂N ∩ L) ⊂ L by ∂L, and L \ ∂L by L◦. Let us
denote by L̄ ⊂ N̄ the canonical 2-sheeted cover (with rami�cations) over the
polyhedron L ⊂ N . Denote by U(L) ⊂ N a small regular neighborhood of
the polyhedron L ⊂ N . In particular, because ∂N ⊂ L, we get the inclusion
∂N ⊂ U(L).

Denote by M ⊂ L the polyhedron in L of self-intersection points of the
multiplicity 4. Denote by WL ⊂ WN ⊂ RPn−k × RPn−k small equivariant
neighborhoods of polyhedra L̄ ⊂ N̄ ⊂ RPn−k × RPn−k correspondingly.

Let us prove the following lemma, this lemma in a straightforward analog
of Lemma 4.

Lemma 7. 1. There exist a Z/2�equivariant mapping d(2) : RPn−k×RPn−k →
Rn × Rn, which has a holonomic self-intersection in the sense of De�nition
1 and which coincides with the extension of the mapping i2 ◦ c′1 : RPn−k →
Rn−4 ⊂ Rn in a small regular neighborhood of the diagonal.

2. Moreover, there exists a resolution map rez : (N \M) → RK to the
corresponding spaces of the second row of the diagrams (35). The map µN =
φ ◦ rez : N \M → K(Ia, 1) is extended to the mapping µa : N → K(Ia, 1)
and satis�es the boundary conditions over the component ∂Ndiag.
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3. The mapping µa : N → K(Ia, 1) satis�es the equations (10) and
induces a cyclic structure of the mapping d(2).

We shall prove Lemma 3, assuming dimensional restrictions (3).

Con�guration space of boundary singularities of the mapping c

Let us consider an ordered pair of points (x, y) ∈ (RPn−k)2, x 6= y, assuming
the condition p(x) = p(y) ∈ J , where the mapping p is given by the formula
(14). Let us assume that the point x is a singular point of the mapping p.
This implies that there exist an (unordered) pair of point [(x1, x2)], each the
point is in�nitesimal-closed to the point x, such that the following conditions
are satis�ed:

x1 6= x2, p(x1) = p(x2). (62)

Assume that the pair of points [(x1, x2)] satis�es the condition (62) and such
there exists a point y1, in�nitesimal-closed to the point x, such that the
following condition is satis�ed:

p(y) = p(x1) = p(x2). (63)

Let us de�ne a space Z ′3◦ as the space of all ordered triples of points
((x1, x2), y), where the both points of the pair (x1, x2) are in�nitesimal-closed
to a point x′ and satis�es the condition (62), the point y is in�nitesimal
closed to y′, p(x′) = p(y′), moreover, the triple ((x1, x2), y) has to satis�es
the condition (63).

The following mapping

F3◦ : Z ′3◦ → Σ◦, (64)

which transforms a triple of points ((x1, x2), y) ∈ Z ′3◦ into a non-ordered pair
of points [(x1, y)] is well de�ned.

Let us de�ne a space Z4◦ as the space of all non-ordered pairs of ordered
pairs of points [((x1, x2), (y1, y2))], where the points of the non-ordered pair
([x1, x2]) are in�nitesimal closed to a point x′, a non-ordered pair [(y1, y2)]
is in�nitesimal closed to a point y′. Moreover, we claim that the triples
(x1, x2), y1) (y1, y2), x1) satisfy the conditions (62), (63) i.e. this triples are
de�ned the corresponding points of Z ′3◦. Additionally, let us assume that the
following condition is satis�ed:

p(y1) = p(x1), (65)

33



this condition with the pair of equations (63) implies the equation

p(x1 = p(x2) = p(y1) = p(y2).

Let us de�ne the canonical 2-sheeted covering

pZ4◦ : Z̄4◦ → Z4◦, (66)

the �ber of this covering over a non-ordered pair of points [((x1, x2), (y1, y2))]
is de�ned as ordered pairs of the same points.

The following 2-valued mapping

F4◦ : Z4◦ → Z ′3◦, (67)

which transforms a non-ordered pair [((x1, x2), (y1, y2))] ∈ Z4◦ into two or-
dered triples of points ((x1, x2), y1), ((y1, y2), x1). The following mapping

G4◦ = F3◦ ◦ F4◦, (68)

which transforms a non-ordered pair of ordered pairs of points
[((x1, x2), (y1, y2))] ∈ Z4◦ into the non-ordered pair of points [(x1, y1)] is well
de�ned.

Let us de�ne the space Z3◦ as the space, which is obtain by the completion
of the space Z ′3◦ by pairs of points, for which x1 = x2, y, x1 6= y. Let us de�ne
a completion Z3 of the space Z3◦ by points, for which x1 = x2 = y. The
mapping F3◦ is naturally extended to the mapping F3 : Z3 → Σ.

Space RΣ in Lemma 3

Let us de�ne the space Z◦, which is obtained from Z3◦ by gluing of the space
Z4◦ by means of the 2-valued mapping F4◦. The space Z◦ is a cylinder of
(a multivalued) mapping F4◦. The following mapping F◦ : Z◦ → Σ◦ is well
de�ned as the composition of (a multivalued) projection Z◦ → Z3◦ with the
mapping Z3◦ → Σ◦. The following diagram is well de�ned:

Y◦ ⊂ Σ◦
F◦←− Z◦,

where the space Y◦ ⊂ Σ◦ is de�ned by the formula (56). Let us de�ne the
space RΣ◦ as the result of gluing of the space Y◦ with the space Z◦ along
the subspace F−1

◦ (Y◦) by the mapping F◦|F−1
◦ (Y◦)

. The space RΣ is de�ned
analogously, by replace the space Σ◦ to the space Σ and the space Z3◦ to the
space Z3 in the construction. The space RΣ is obtained from the space RΣ◦
using the completion by Qdiag.
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Resolution mapping φ◦ : RΣ◦ → K(Ia, 1)

The mapping φ◦|Y◦ on the subspace Y◦ ⊂ RΣ◦ was constructed in the proof
of the statement A of the lemma. Let us construct the mapping

φZ◦ : Z◦ → K(Ib, 1). (69)

Then let us prove that the mapping iIb,D ◦ φZ◦ : Z◦ → K(Ib, 1) ⊂ K(D, 1)
coincides with the composition η◦ ◦ F◦ : Z◦ → K(D, 1), where η◦ is the
structural mapping, which is given by the formula (23).

Let us de�ne the mapping

φZ′3◦ : Z ′3◦ → RPn−k ⊂ K(Id, 1) (70)

by the formula φZ′3◦((x1, x2), y) = y. The mapping (70) is expendable to the
following mapping

φZ3◦ : Z3◦ → RPn−k ⊂ K(Id, 1). (71)

Lemma 8. By the assumption r ≡ 0 (mod 2) the mapping η◦ ◦ F3◦ : Z ′3◦ →
Σ◦ → K(D, 1) allows a reduction to the mapping in the subspace K(Id, 1) ⊂
K(D, 1), which is homotopic to the mapping (71).

Proof of Lemma 8

Let m : S1 ⊂ Z3◦ be a path, which is projected into the path l : S1 ⊂
U(Qdiag)◦ ⊂ K◦ by means of the mapping F3◦. Let us assume that the path

l transversely intersects the subspace K
[1]
◦ of singular strata of the deep 1,

and does not intersect strata of the deep 2 of the strati�cation (48). Let us
denote intersection points by {t1, . . . , tj}.

On each elementary stratum of the deep 0 of the polyhedron U(Qdiag)◦,
which contains the point pt = l(0), 0 ∈ S1 is the market point, let us �xes a
coordinate system (x̌1(0), x̌2(0)).

Let us extend in a natural way a coordinate system (x̌1(0), x̌2(0)) from
the point pt along the path m (about the natural continuation coordinate
system in neighborhoods of points {t1, . . . , tj} see the construction of the
structural maps η◦).

The transformation of the initial system of coordinates
(x̌1(0), x̌2(0), x̌3(0)) in the system of coordinates (x̌1(2π), x̌2(2π), x̌3(2π)) is
well de�ned. This transformation is represented by the direct product of
two natural transformations η1,2 ∈ Id, η3 ∈ Id of the �rst two and the third
coordinate respectively.
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The homomorphism φ∗,Z3◦(m), which is associated with (71) is de�ned by
the formula φ∗,Z3◦(m) = η3(m). The homomorphism (η◦ ◦ F◦)∗(m) is de�ned
by the formula (η◦ ◦ F◦)∗(m) = iId,D ◦ η1,2(l). Let us prove the following
equation:

η3(m) = η1,2(l). (72)

Let us assume that the path l is inside the only elementary stratum of
the deep 0. In this case the equation (72) is evident.

Let us consider a general case. Let us de�ne a path l′, which is homotopic
to the path l in U(Qdiag)◦, and satis�es the following conditions. For an
arbitrary point a ∈ l′ let us de�ne the principle and the auxiliary coordinate,
such that the principle coordinate have the residue +1 and this coordinate
corresponds to the regular momentum coordinate. Each auxiliary coordinate
has a residue −1, this coordinate corresponds to the singular momentum
coordinates of an in�nitesimal closed point a′ ∈ Qdiag.

Let the path l′ does not intersect strata of the deep 2, let {x1, . . . , xs} be
the �nite set of the critical values of the path l, in which point the path crosses
the stratum of the depth 1. Each critical value xi of the path l determines
a pair of closed critical values yi, zi of the path l′. It is required that l′ on
the interval (xi−1, xi) has the only one axillary coordinate, the number of
this coordinate denote by j([i − 1, i]). It is required that the path l′ on the
short interval (yi, zi) has the two axillary coordinates, which is denoted by
j([i− 1, i]) è j([i, i+ 1]).

Moreover, in the neighborhood of each critical points of the path l′ the
following conditions are satis�ed (which is not a restriction of a generality):

� At the critical points the collection of the principal and the axillary
coordinates are continuous;

� At the point yi the �rst axillary coordinate with numbers j([i − 1, i]),
j([i, i+1]) change continuously, the second axillary coordinate with the num-
ber j([i, i+ 1]) is not continuous and is changed to the opposite, the second
axillary coordinate with the number j([i− 1, i]) is continuous (this condition
implies that on the short interval (yi, zi) the residues of the �rst two axillary
coordinates is equal to −1); the third auxiliary coordinate is continuous;

� At the point zi the �rst two axillary coordinate with numbers j([i −
1, i]), j([i, i + 1]) change continuously; the second axillary coordinate with
the number j([i − 1, i]) is not continuous and is changed to the opposite,
the second axillary coordinate with the number j([i, i + 1]) is continuous
(and therefore on the interval (zi, yi+1) the residue of the �rst two axillary
coordinates is equal to −1), the third axillary coordinate with the number
j([i, i + 1]), generally speaking, is not continuous and is changed by the

36



multiplication on the element

θ(xi) ∈ Id (73)

with the prescribed value of the turd coordinate at the point xi along the
path l′.

Evidently, the homotopies l 7→ l′ m 7→ m′ are well de�ned, where
F3◦(m) = l, F3◦(m

′) = l′.
Let us prove that the value η3(m′) ∈ Id is given by the following formula:

η3(m′) =
∏
i

θ(xi). (74)

For the path m′ let us consider another path m′0, which is also projected
onto l′ and satis�es the equation θ(xi) = 1 for an arbitrary i. The homology
class of the path η3(m′) is changed from the homology class of the path
η3(m′0) by the element

∏
i θ(xi) and, moreover, the following formula (72) for

the path m′0 is evident.
For the path m′ the following equation is satis�ed:∏

i

θ(xi) = 1.

The proof follows from the following facts: the number of jumps of coordi-
nates coincide; the number r of coordinates is even. Lemma 8 is proved.

Let us consider the involution on the canonical covering Z̄4◦, this covering
is given by the formula (66). The involution transforms the ordered triple
((x1, x2), (y1, y2)) into the ordered triple ((y1, y2), (x1, x2)). Let us consider
the composition φZ3◦ ◦ F4◦ ◦ pZ4◦ : Z̄4◦ → Z4◦ → Z ′3◦ → K(Id, 1). It is not
di�cult to prove that this composition is factorized to the following mapping:

φZ4◦ : Z4◦ → K(Id, 1). (75)

From the Lemma 8 we get, that the mapping φZ4◦ ◦ pZ4◦ : Z̄4◦ → K(Id, 1)
coincides with the mapping φ◦◦G4◦◦pZ4◦ = φZ3◦ ◦F4◦◦pZ4◦ : Z̄4◦ → K(Id, 1).
Therefore we get φ◦ ◦ G4◦ = φZ3◦ ◦ F4◦. Therefore the resulting mapping
φ◦ : RΣ◦ → K(Ia, 1) is well de�ned.
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Proof of Lemma 3

The space RΣ and the resolution mapping is de�ned above. For a suitable
mapping (75) (this mapping is well de�ned up to the composition with the
standard mapping K(Ib, 1)→ K(Ib, 1), given by the conjugation, the bound-
ary conditions are satis�ed. Lemma 3 is proved.

Proof of Lemma 7

Let us prove the statement 1. Assuming the dimensional restrictions (3),
the mapping c′1 : RPn−k → Rn−4 is not an embedding and could have self-
intersection points of multiplicities 2, 3, or 4. Let us consider the diagram
(35). Denote by N2◦ ⊂ N ′◦ the open polyhedron of self-intersection regular
points of c′1. This polyhedron is immersed into Rn−4. By the de�nition the
following decomposition is well de�ned: N2◦ = N ′◦ \ L◦, where L◦ is the
obvious denotation for the polyhedron L \ (L ∩ ∂N), L is de�ned by the
formula (61). Let us denote by N2′◦ ⊂ N2◦ a little smaller polyhedron,
which is de�ned by the cutting out from N2◦ the regular neighborhood of
the polyhedron L◦. The following classifying mapping

U(N ′)◦ \M)→ RΣ◦ (76)

is well de�ned.
Let us construct the equivariant deformation of the equivariant mapping

(c′1)(2) : RPn−k×RPn−k → Rn−4×Rn−4 ⊂ Rn×Rn with the support in a small
regular neighborhood of the subpolyhedron N2′◦ ×N2′◦ ⊂ RPn−k ×RPn−k to
the required equivariant mapping d(2) in the space of formal mappings with
holonomic self-intersections. In the considered neighborhood ofN2′◦ the map-
ping c′1 is an immersion, therefore by Lemma 6 a formal regular deformation,
which deforms self-intersection polyhedron N ′ into self-intersection polyhe-
dron N is well de�ned. The mapping rez : N \M → RΣ is well de�ned
by an extension of the mapping (76). This mapping satis�es the prescribed
boundary conditions on the diagonal. The statement 1 is proved.

Let us prove the statement 2. The polyhedron M ⊂ L by general po-
sition arguments satis�es the following condition: in each simplex of the
triangulation of the polyhedron L the corresponding subsimplex of the sub-
polyhedron M has at least the codimension 3. Therefore the mapping
φ ◦ rez : N \ M → K(Ia, 1), constructed above, is extended uniquely up
to homotopy to a mapping on the hole N . The mapping (9) is well de�ned.
The statement 2 is proved.
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Let us prove the statement 3. It is su�ciently to check that the equations
(10) are satis�ed (see also [A1,(41)]). Let us prove this equation in the case
q = 0. For an an arbitrary positive q the proof is analogous.

Use the Lemma 27 in [A1], whereby it is su�cient to consider the absolute
cycle µR̄ : R̄n−k → K(Id, 1) (recall that this cycle is obtained by means of
the gluing of the map µ̄a;N : (N̄ , ∂N̄) → K(Id, 1) along the boundary by a
cylinder) and it is su�cient to verify that the cycle µR̄ de�nes a generator of
the homology group Hn−k(K(Id, 1);Z/2). We denote the homology class of
the cycle µR̄ by x ∈ Hn−k(K(Id, 1);Z/2).

Consider another homology class pIc,Id;∗ ◦ η̄∗([N̄ ]) ∈ Hn−k(K(Id, 1);Z/2),
which is determined by the cycle, obtained by means of the composition of
the canonical covering η̄ : N̄ → K(Ic, 1) over the characteristic map η :
N → K(D4, 1) with the map pIc,Id : K(Ic, 1)→ K(Id, 1). In the last formula
the polyhedron N̄ is considered as a closed manifold, i.e. the canonical
covering is taken �rst over N◦, where this canonical covering is well de�ned.
Then the standard compacti�cation is de�ned. The result of this standard
compacti�cation is de�ned as the total space of the covering with rami�cation
over the boundary ∂N . The manifold N̄ is closed, i.e. the canonical covering
is branched over the boundary ∂N . Denote this homology class by y ∈
Hn−k(K(Id, 1);Z/2).

Let us prove that y is a generator. Indeed, the cohomology class of
yop that is Poincar�e dual to the homology class y is calculated as a normal
characteristic class w̄k ∈ Hk(RPn−k;Z/2) = Hk(K(Id, 1);Z/2). (When n =
2` − 1 the cohomology class w̄k is nontrivial.)

Consider another homology class pIc,Id;∗ ◦ η̄∗([N̄ ]) ∈ Hn−k(K(Id, 1);Z/2),
which is determined by the cycle, obtained by means of the composition of
the canonical covering η̄ : N̄ → K(Ic, 1) over the characteristic map η : N →
K(D4, 1) with the map pIc,Id : K(Ic, 1) → K(Id, 1). In the previous formula
the polyhedron N̄ is considered as a closed manifold: the canonical covering
is taken �rst over N◦, where this covering is well de�ned. Then the standard
compacti�cation is de�ned as the total space of the branched covering over
the boundary ∂N . Denote this homology class by y ∈ Hn−k(K(Id, 1);Z/2).

Let us prove that y is a generator. The cohomology class of yop that is
Poincar�e dual to the homology class y is calculated as a normal characteristic
class w̄k ∈ Hk(RPn−k;Z/2) = Hk(K(Id, 1);Z/2). (When n = 2` − 1 the
cohomology class w̄k is nontrivial.)

Now let us check that x = y. Recall that N = NK ∪ NΣantidiag ,
∂NK = (Nantidiag ∪ Ndiag) ⊂ NK . Therefore, the 2-sheeted covering N̄ it-
self is represented by the following union: N̄ = N̄Σantidiag ∪N̄antidiag N̄K . The

following analogous formula is satis�ed: R̄ = L̄(d0) ∪R̄antidiag R̄K0 . Moreover,
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the mappings µ̄a;N(d0) and µR̄ on the common part L̄(d0) coincide, because
the mappings on the antidiagonal part are cyclic. The following formula is
satis�ed: R̄ = R̄Σantidiag ∪R̄antidiag R̄K . We have NΣantidiag = RΣantidiag . More-

over, the mappings µ̄a and µR̄ on the common part N̄Σantidiag coincide.
Let us use an additional symmetry on the singular polyhedron. The

involution onNK◦ is well de�ned. This involution is induced by the involution
(46). This involution is invariant on the diagonal and the antidiagonal and
is free outside the antidiagonal component of the boundary. The homology
class x− y is represented by the cycle µ̄a|N̄ ∪ µ̄R|R̄K : N̄K ∪ R̄K → K(Id, 1),
this cycle is homologous to zero. Lemmas 2 and 7 are proved.

6 Application

Let us prove [Proposition 28,A1] with the dimensional restriction (3). The
proof of this proposition is based on [Lemma 14, A3], this lemma contains a
mistake (self-intersection points of the multiplicity 4 are not well considered
and the mapping t0 does not extended on the polyhedron of self-intersection
points). Additionally [A3] contains no proof of Lemma 23. De�nition 24 in
[A1] of cyclic structure for mappings with singularities has to be changed,
the correction is in the presented paper.

Proof [Proposition 28,A1] by means of Lemma 2

Let us consider the equivariant mapping d(2) : RPn−k × RPn−k → Rn × Rn,
constructed in Lemma 2. The mapping d : RPn−k → Rn is well de�ned, the
formal extension of this mapping coincides with the mapping d(2) near the di-
agonal. Denote by iŪN : ŪN ⊂ RPn−k×RPn−k the equivariant neighborhood,
which is rather far from the diagonal, where the mapping d(2) is holonomic.

De�ne the open manifold V n−k of the dimension n − k as the minimal
manifold, for which the standard embedding iŪN : ŪN ⊂ V n−k × V n−k is
well-de�ned. Let us consider the immersion φV : V n−k # RPn−k, for which
the composition φU ◦ pŪN : ŪN → V n−k → RPn−k, where pŪN : ŪN → V n−k

is the natural projection onto the �rst factor, coincides with the projection
Im(iŪN ) on the �rst factor.

Denote by U∂N ⊂ RPn−k the regular ε1�neighborhood of critical points of
the mapping d. The image of the restriction of the mapping φV on V n−k ∩
φ−1
U (U∂N) belongs to the neighborhood U∂N ⊂ RPn−k.
By assumption the mapping d(2)|ŪN : ŪN → Rn × Rn has a holonomic

self-intersection and the mapping θ : V n−k → Rn, such that d(2) is the
restriction of the extension of the mapping θ on Im(iŪN ) is well de�ned.
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The restriction of the mapping θ on V n−k ∩ φ−1
U (U∂N) coincides with the

composition d◦φV . The marked component (possibly, non-connected) of the
self-intersection polyhedron of the mapping θ is well de�ned, this component
is PL-homeomorphic to the polyhedron N outside U∂N .

Let us consider an arbitrary element of the group Immsf (n − k, k), this
element is represented by an immersion f ′ : Mn−k # Rn, equipped with a
skew-framing (κ,Ξ′). Let us consider the characteristic class κ : Mn−k →
RPn−k of this skew-framing.

Consider the open neighborhood U∂N ⊂ RPn−k and denote by UMn−k ⊂
Mn−k the inverse image κ−1(U∂N) of this neighborhood. Consider an open
subdomain Im(φV ) ⊂ RPn−k and denote by VMn−k ⊂Mn−k the inverse im-
age κ−1(Im(φV )) of this subdomain. The immersion φV : V n−k # Im(φV ) ⊂
RPn−k induces the immersion φWM : WMn−k # VMn−k ⊂ Mn−k and the
mapping κWM : WMn−k → V n−k by natural way.

Consider the subdomain VMn−k ∩ UMn−k ⊂ Mn−k and denote by
V UMn−k the inverse image φ−1

WM(VMn−k ∩ UMn−k) ⊂ WMn−k. The com-
position κ ◦ φWM : WMn−k → VMn−k → RPn−k is such that the restriction
of this composition onto the domain V UMn−k ⊂ WMn−k coincides with the
composition κ ◦ φWM : V UMn−k → VMn−k ∩ UMn−k → RPn−k.

Consider the mapping θ ◦ κWM : WMn−k → V n−k → Rn and the map-
ping d ◦ κ : UMn−k → U∂N → Rn. These two mappings coincides on the
subdomain V UMn−k ⊂ WMn−k, i.e. the restrictions θ◦κWM and d◦κ◦φWM

to this domain coincide.
Let us consider the immersion f ′ : Mn−k # Rn. Let us apply C0�principle

[Preposition 30,A1] and let us construct an immersion α1 : WMn−k # Rn,
ε�closed to the composition θ ◦ κWM and the immersion α2 : UMn−k # Rn,
ε�closed to the composition d ◦ κ, where ε << ε1 and satisfy the following
properties:

�1. the immersions α1, α2 coincide on the common subdomain
V UMn−k ⊂ WMn−k, i.e. the restrictions of α1 and α2 ◦ φWM onto this
subdomain coincide;

�2. the immersion α1 is in the regular homotopy class of f ′ ◦φWM |WMn−k ,
the immersion α2 is in the regular homotopy class of f ′|UMn−k⊂Mn−k .

Self-intersection points of the immersion α1 is the manifold with bound-
ary, denote this manifold by Nn−2k

α1
; Self-intersection points of the immersion

α2◦φWM is also the manifold with boundary, denote this manifold by Nn−2k
α2

.
The constant ε is small enough, therefore the manifold Nn−2k

α2
contains the

component which is di�eomorphic to the neighborhood of the boundary of
the component Nn−2k

α1
and is denoted by NWUn−2k

α2
⊂ Nn−2k

α2
. Moreover the

following two properties are satis�ed.
The components of the manifold Nn−2k

α2
\NWUn−2k

α2
are divided into the
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following two types. The component of type 1 is immersed into a regular
neighborhood of the self-intersection polyhedron of the mapping d. All the
last self-intersection points of α2 belong to the components of type 2. Note
that the component of the type 2 consists of self-intersection points x1 ∈
Mn−k, x2 ∈Mn−k, α2(x1) = α2(x2), for which κ(x1) and κ(x2) are closed on
RPn−k. Let us take the union of the component of type 2 with NWUn−2k

α2

and denote this union by N0n−2k
α2

.
The components Nn−2k

α1
, N0n−2k

α2
are glued together into one component:

N0n−2k
α2

∪NWUn−2k
α2

Nn−2k
α1

. By the construction the manifold NWUn−2k
α2

is

ε�closed immersed into ε1�regular neighborhood of the boundary of the self-
intersection polyhedron N of the mapping θ : V n−k → Rn.

The manifold N0n−2k
α2
∪ Nn−2k

α1
is equipped by an immersion into Rn, let

us denote this immersion by g. The immersion g is a D�framed immersion,
because the manifold N0n−2k

α2
∪Nn−2k

α1
is a component of self-intersection man-

ifold of a skew-framed immersion. The self-intersection manifold is presented
as an intersection of the two regular sheets. In particular, an immersion α′2,
for which N0n−2k

α2
is a closed component of intersection is well de�ned and,

moreover, one may assume that the immersion α′2 coincides with the immer-
sion α1 in a domain, which self-intersects along NWUn−2k

α2
.

The self-intersection manifold of the immersion α′2 ∪ α1 of the manifold
with boundary contains a closed component N0n−2k

α2
∪NWUn−2k

α2
Nn−2k
α1

. Denote

the parametrized immersion of this component by g, denote the D�framed
of this immersion by Ψ.

The Hopf invariant h(f ′, κ,Ξ′) of the skew-framed immersion (κ,Ξ′) co-
incides with the degree modulo 2 of the mapping κ. The Hopf invariant of
the framed immersion (g,Ψ) coincides with h(f ′, κ,Ξ′).

Evidently, in the regular cobordism class [(f ′Ξ′)] there exists a skew-
framed immersion (f,Ξ), which has a closed component of the self-
intersection manifold, which is di�eomorphic to N0n−2k

α2
∪ Nn−2k

α1
and is

parametrized by a D-framed immersion (g,Ψ). The mapping µa : N0n−2k
α2
∪

Nn−2k
α1

→ K(Ia, 1) is well de�ned. This mapping is de�ne on the submanifold
N0n−2k

α2
by means of the cyclic structure of d(2) and on the submani�od Nn−2k

α1

by the mapping κ. The mapping µa on all last components of self-intersection
of the immersion g de�ne as the trivial mapping. The skew-framed immersion
(f,Ξ) is equipped with the cyclic structure, described above. [Proposition
28,A1] is proved.
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Remark

The statement of [Lemma 13,A3] contains a mistake. This mistake admits
the analogous correction. The de�nition of abelian structure, used in [Lemma
1,A2] has to be changed and formulated analogously to the de�nition of cyclic
structure in the presented paper. Analogous changes has to be considered in
[De�nitions 28, 29, A2].
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